2011 SCMR/Euro CMR Joint Scientific Sessions

February 3 – 6, 2011
Nice Acropolis Convention Centre
Nice, France
Thursday, February 3, 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Track B / C / G</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00 am – 06.00 pm</td>
<td>Physician Pre-conference Course</td>
<td>Basics of CMR</td>
</tr>
<tr>
<td>11.00 am – 12.30 pm</td>
<td>Lecture CMR of Ischemia and Viability</td>
<td>Heart Failure</td>
</tr>
<tr>
<td>12.30 pm – 01.30 pm</td>
<td>Lecture CMR Assessment of Cardiac Metabolism</td>
<td>Physiology and Metabolism</td>
</tr>
<tr>
<td>01.00 pm – 01.30 pm</td>
<td>Session Mixed Cases from Leiden</td>
<td>Basic Science</td>
</tr>
<tr>
<td>02.00 pm – 05.30 pm</td>
<td>Case Review Session Mixed Cases from France – Artifacts</td>
<td>Pre-conference Course</td>
</tr>
<tr>
<td>07.00 am – 08.00 am</td>
<td>Case Review Session Mixed Cases from Asian – Coronary MRA</td>
<td>Early Career Award – Basic Science</td>
</tr>
<tr>
<td>08.00 am – 09.00 am</td>
<td>Oral Abstracts Session 8 CMR vs. Other Modalities</td>
<td></td>
</tr>
</tbody>
</table>
Dear colleagues and friends,

On behalf of the 2011 Program Committee, we would like to welcome you to Nice, France for the 2011 SCMR/Euro CMR Joint Scientific Sessions of the Society for Cardiovascular Magnetic Resonance and the Euro CMR Working Group on Cardiovascular Magnetic Resonance of the European Society of Cardiology.

We hope that the four days of the meeting will provide an exciting opportunity for you to explore new areas, catch up with the state of the art of CMR imaging, meet old friends and make new ones.

The program is structured around three main pathways: basic science/physics, pediatrics/congenital, and general CMR. For the first time, this year’s program also features a pre-conference for each of the three parallel tracks. In addition, the case review sessions that proved so popular at the last SCMR meeting, have become a full fourth track at this year’s joint meeting.

Another new feature of this meeting will be early morning sessions aiming to explain MR physics to non-physicists and cardiology concepts to non-cardiologists. We hope that these sessions will help bridge gaps in understanding between delegates from different academic and clinical backgrounds.

Thank you for joining us in Nice. Thank you to all presenters, organizers, sponsors and attendees. You make this conference happen! We hope and believe, that this meeting will be as exciting for you as it has been for us to prepare and organize.

Sven Plein, MD, PhD
2011 Scientific Program Chair

Raymond Kwong, MD
2011 Abstract Chair

Eike Nagel, MD
President of the Society for Cardiovascular Magnetic Resonance

Herbert Frank, MD
Chairman of the CMR Working Group of ESC

Massimo Lombardi, MD
Past Chairman of the CMR Working Group of ESC
SCMR OFFICERS
President: Eike Nagel, MD, King’s College London, London, United Kingdom
Vice-President: Scott Flamm, MD, Cleveland Clinic, Cleveland, OH, USA
Secretary-Treasurer: Andrew Arai, MD, NHLBI-National Institutes of Health, Bethesda, MD, USA
Vice Secretary-Treasurer: Albert de Roos, MD, PhD Leiden University Medical Center, Leiden Netherlands
Immediate Past President: Christopher Kramer, MD University of Virginia Health Systems, Charlottesville, VA, USA

SCMR BOARD MEMBERS
Rene Botnar, PhD, King’s College London, London, United Kingdom
Jens Bremerich, MD, Klinik für Radiologie und Nuklearmedizin, Basel, Switzerland
Susan Eder, RT, Emory Crawford Long Hospital, Atlanta, GA, USA
Victor Ferrari, MD, University of Pennsylvania Medical Center Philadelphia, PA, USA
Mark Fogel, MD, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Raymond Kwong, MD, Brigham and Women’s Hospital, Boston, MA, USA
Debiao Li, PhD, Cedars-Sinai Medical Center, UCLA, Los Angeles, CA, USA
James Moon, MD, The Heart Hospital, London, United Kingdom
Dudley Pennell, MD, Royal Brompton Hospital, London, United Kingdom
Sven Plein, MD, PhD, University of Leeds, Leeds, United Kingdom
Jeanette Schulz-Menger, MD, Charité Berlin und HELIOS Klinik, Berlin, Germany
Orlando Simonetti, PhD, The Ohio State University, Columbus, OH, USA

JOINT SCMR/EURO CMR 2011 PROGRAM COMMITTEE
Chair: Sven Plein, MD, PhD University of Leeds, Leeds, UK
Co-Chair: Raymond Kwong, MD Brigham & Women’s, Boston, MA, USA
Andrew Arai, MD, NHLBI-National Institutes of Health, Bethesda, MD, USA
Hakan Arheden, MD, PhD Lund University, Lund, Sweden

Jörg Barkhausen, MD University Hospital Essen, Essen, Germany
Philipp Beerbaum, MD Kings College London, London, UK
David Bluemke, MD, PhD National Institutes of Health, Bethesda, MD, USA
Mark Fogel, MD, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Tal Geva, MD Children’s Hospital Boston, Boston, MA, USA
Michael Jerosch-Herold, PhD Brigham & Women’s Hospital, Boston, MA, USA
Peter Kellman, PhD, NHLBI – National Institutes of Health, Bethesda, MD, USA
Lucia J.M. Kroft, MD, Leiden University Medical Center, Leiden, The Netherlands
Gregory Lanz, MD, PhD Washington University, St. Louis, MO, USA
Robert Lederman, MD, NHLBI – National Institutes of Health, Bethesda, MD, USA
Tae Hwan Lim, MD Asan Medical Center, Seoul, Korea
Michael Markl, PhD University Hospital Freiburg, Freiburg, Germany
Edward Martin, MD Oklahoma Heart Institute, Tulsa, OK, USA
Karen Ordovas, MD University of California, San Francisco, CA, USA
Martin Prince, MD, PhD Weill Cornell Medical Center, New York, NY, USA
Frank Rademakers, MD UZ Leuven, Leuven, Belgium
Tobias Schaeffter, PhD Kings College London, London, UK
Jeanette Schulz-Menger, MD Charité Berlin und HELIOS Klinik, Berlin, Germany
Jürg Schwitter, MD University Hospital Lausanne, Lausanne, Switzerland
Joseph Selvanayagam, MD Flinders Medical Center, South Australia, Australia
Andrew Taylor, MD Great Ormond Street Hospital for Children, London, UK
Richard White, MD, University of Florida College of Medicine, Jacksonville, FL, USA
Graham Wright, PhD Sunnybrook Health Sciences Centre, Toronto, Canada
SCMR AND Euro CMR
BOARDS AND COMMITTEES

Euro CMR
Chairman: Herbert Frank, MD, Interne Abteilung, Donau Klinikum, Landeskrankenhaus Tulln, Tulln, Austria
Vice Chairman: Heiko Mahrholdt, MD, Robert-Bosch-Krankenhaus, Stuttgart, Germany
Past-Chairman: Massimo Lombardi, MD, MRI Laboratory, Clinical Physiology Institute, CNR National Research Council, Pisa, Italy
Treasurer: Bernhard L. Gerber, MD, PhD, FESC, Divisions of Cardiology, Cliniques Universitaires St. Luc UCL, Brussels, Belgium

Euro CMR NUCLEUS MEMBERS

Oliver Bruder, MD, Elisabeth-Krankenhaus Essen, Germany
Chiara Bucciarelli-Ducci, MD, PhD, National Heart & Lung Institute London, London, UK
Marco Gotte, MD, PhD, VUMC, Amsterdam, The Netherlands
Raad Mohiaddin, MD, PhD, Royal Brompton Hospital, London, UK
Sven Plein, MD, PhD, University of Leeds, Leeds, UK
Holger Thiele, MD, Klinik Herzzentrum Leipzig, Leipzig, Germany
Emanuela Valsangiacomo, MD, University Children’s Hospital, Zurich, Switzerland
Ex-officio: Jeanette Schulz-Menger, MD, FESC, Charité Berlin und HELIOS Klinik, Berlin, Germany

Euro CMR EXAM in Hermes Auditorium

FEBRUARY 6, 2011/2.00 pm – 5.00 pm

The exam is organized annually by the CMR WG of the ESC. After successfully completing the exam, candidates will receive a certificate stating they have taken and passed the exam. The exam can also be used towards future accreditation processes in CMR, but note that passing this exam alone does not constitute formal accreditation in CMR.

The exam consists of a theoretical part and a clinical case part. Both parts of the examination have to be passed to pass the examination. The exam lasts 3 hours in total.

The passing scores for each section are established after each exam based on statistical performance of individual questions and on the average level of scores at the respective exam. As a guide, the pass rate is usually around 60–65% of candidates.

SCIENTIFIC SESSION OBJECTIVES

The scientific sessions are designed for clinical practitioners and trainees in cardiology, cardiothoracic surgery, and cardiovascular radiology, and basic scientists working in related fields.

The goals of the Scientific Sessions are to

- Deliver state of the art information on the science of CMR imaging and spectroscopy.
- Provide a forum for the presentation of new information on CMR.
- Compare and contrast CMR methods with other cardiovascular imaging approaches.

At the conclusion of the Scientific Sessions, participants should be better able to:

1. Discuss current and new applications where CMR helps in the diagnosis or management of adult cardiovascular disease.
2. Discuss issues how and when to perform CMR in pediatric subjects with cardiovascular and congenital heart disease.
3. Provide a framework for the regulatory and economic factors that influence clinical CMR.
5. Present and discuss contrast enhanced and non-contrast enhanced strategies of vascular MRI.
6. Present and discuss new approaches of molecular and interventional CMR.
7. Present emerging CMR techniques that may have novel clinical applications.
8. Explore current evidence that support CMR to be potentially cost-effective or provide improvement of patient care.
EBAC ACCREDITATION

The event “2011 SCMR/Euro CMR Joint Scientific Sessions” is accredited by the European Board for Accreditation in Cardiology (EBAC) for 24 hours of External CME credits.

Each participant should claim only those hours of credit that have actually been spent in the educational activity. EBAC works according to the quality standards of the European Accreditation Council for Continuing Medical Education (EACCME), which is an institution of the European Union of Medical Specialists (UEMS).

EACCME credits are recognized in Europe and North America. EACCME credits can be exchanged for their national equivalent by contacting the respective National CME authority. EACCME credits are recognized by the American Medical Association (AMA) towards the Physician’s Recognition Award (AMA). SCMR will assist its members in applying to the AMA for equivalent AMA PRA Category 1 credit(s)TM.

Participants will be awarded CME credits by EBAC for the attendance at Scientific Sessions from Thursday, February 3, 2011 to Sunday, February 6, 2011. Full congress days count for 6 credits, half congress days count for 3 credits.

TECHNOLOGIST WORKSHOP

As of publication application to ASRT has been submitted and approved credits are pending. Each technologist should claim only those hours of credit actually spent in this activity.

DISCLOSURE DECLARATIONS

All participating speakers and abstract authors are required to disclose to the program audience any financial relationships related to the subject matter of this program. A complete list of disclosures is available on pages 69 – 72.
GENERAL INFORMATION

VENUE
Nice Acropolis
Esplanade Kennedy, BP4083
06302 Nice, Cedex 4, France

ADMISSION
Conference name badges are required for admission to all activities related to the 2011 SCMR/Euro CMR Joint Scientific Sessions, including the exhibit hall and social events. Registered attendees have access to all sessions.

NAME BADGES
SCMR/Euro CMR Attendees red
SCMR/Euro CMR Attendees with Pre-Conference Course red with blue color bar
Faculty blue
Exhibitors green

REGISTRATION DESK AND HOURS
The Registration Desk is located at Agora 1 on level 1 of the Nice Acropolis. The Registration Desk will be open and staffed during the following hours:

Thurday, February 3, 2011 7:00 am – 6:00 pm
Friday, February 4, 2011 6:00 am – 6:00 pm
Saturday, February 5, 2011 6:30 am – 6:00 pm
Sunday, February 6, 2011 6:30 am – 2:00 pm

EBAC CME CERTIFICATE
Please hand in the EBAC evaluation form, enclosed in the conference bag, at the registration counter in order to receive the EBAC CME certificate. CME credits will be given for attendance at the SCMR/Euro CMR Joint Scientific Sessions from Thursday, February 3, 2011 to Sunday, February 6, 2011. Full congress days count for 6 credits, half congress days count for 3 credits.

EXHIBITS
Educational and informational exhibits will be available in Rhodes area on level 2 during the 2011 SCMR/Euro CMR Joint Scientific Sessions. Exhibiting company representatives will be available to answer your questions about their products and services. Please visit the exhibits; the complete list of exhibits can be found on pages 73 – 74. The opening hours of exhibits are as follows:

Friday, February 4, 2011 10:00 am – 8:00 pm
Saturday, February 5, 2011 10:30 am – 6:30 pm
Sunday, February 6, 2011 9:30 am – 1:30 pm

SPEAKER READY ROOM
The 2011 Program Committee is committed to providing attendees’ cutting edge technology and coordinated presentations at the 2011 SCMR/Euro CMR Joint Scientific Sessions. Speakers are asked to download their presentations no later than 90 minutes prior to start of their session. Due to time and technical reasons we kindly ask the speakers not to use their own notebook. Several PC work stations are provided in the Speaker Ready Room where speakers can also work on their presentations in a quiet area. Technical staff will be there to assist.

The Speaker Ready Room is located in the Hermes Lounge on level 2 of the Nice Acropolis and will be open the following days and times:

Thursday, February 3, 2011 7:00 am – 6:00 pm
Friday, February 4, 2011 6:00 am – 6:00 pm
Saturday, February 5, 2011 6:30 am – 6:00 pm
Sunday, February 6, 2011 6:30 am – 2:00 pm

ACKNOWLEDGEMENTS
The Society for Cardiovascular Magnetic Resonance and the ESC Working Group on Cardiovascular Magnetic Resonance gratefully acknowledge the support of these scientific sessions from the following industry supporters (as of January 15, 2011):

Siemens Healthcare
GE Healthcare
Philips Healthcare BV

Toshiba Medical Systems
Medis medical imaging systems bv

www.scmreurocmr2011.org 7
SCMR/EuroCMR PRE-CONFERENCE COURSES

FEBRUARY 3, 2011

Physician Pre-conference Course
8.00 am – 6.00 pm Athena Auditorium

Moderators:
Patricia Bandettini, MD, National Institutes of Health
Steffen E. Petersen, MD, PhD, FESC, Barts and The London NIHR

8.00 am – 10.00 am
Basics of CMR

8.00 am
Basics: spins and hardware
Tobias Schaeffter, PhD, Kings College London
Learning Objectives*
> Understand the basic principles of MRI
> Know the purpose of hardware components of an MRI scanner
> Understand the influence of hardware components on the MRI image quality (e.g. field strength of main field, gradients)

8.20 am
Black-blood sequences
Anthony H. Aletras, PhD, University of Central Greece
Learning Objectives*
> Understand the basic MRI physics of black-blood pulse sequences
> Understand where and how to use black-blood pulse sequences in routine cardiac imaging
> Describe advantages and disadvantages of using black-blood pulse sequences

8.40 am
Bright-blood sequences
Robert M. Judd, PhD, Duke University
Learning Objectives*
> Understand why blood is bright in GRE pulse sequences
> Understand why blood is bright in SSFP sequences
> Understand why blood is bright in GRE and SSFP sequences after an MRI contrast agent has been administered

9.00 am
Let’s go faster: parallel acquisition techniques
Michael Hansen, PhD, National Institutes of Health
Learning Objectives*
> Understand the basic encoding principle employed in parallel imaging
> Describe the basic principles of parallel imaging reconstruction
> Understand the trade-offs between imaging speed, image quality, and signal to noise

9.20 am
Contrast material, NSF
Martin R. Prince, MD, PhD, FACP, Cornell University
Learning Objectives*
> Review safety of MRI contrast agents and the relative risks of allergic reactions and NSF
> Minimize risk of NSF and allergic reactions when using gadolinium
> Understand the latest data on NSF pathogenesis

9.40 am
Dealing with breathing artifacts and arrhythmia
Peter Kellman, PhD, National Institutes of Health
Learning Objectives*
> Understand image artifacts caused by respiratory motion and/or arrhythmias in various cardiac MRI protocols
> Understand the benefits and limitations of real-time cine imaging
> Understand the benefits and limitations of single shot accelerated imaging

10.00 am – 10.30 am Refreshment Break

10.30 am – 12.30 pm
How to sessions

10.30 am
How to measure regional and global ventricular function
Daniel B. Ennis, PhD, University of California
Learning Objectives*
> Understand how to acquire the standard cardiac views
> Quantify right and left global ventricular function
> Understand the value of quantifying regional cardiac function

10.50 am
How to quantify blood flow
Saul Myerson, MD, MRCP, John Radcliffe Hospital
Learning Objectives*
> Understand how flow is measured with CMR, including basic MR physics of flow
> Understand the optimal use of flow techniques, including how best to use in-plane and through-plane flow sequences, and their application to specific cardiac conditions
> Understand the potential errors and pitfalls in measuring flow

11.10 am
How to perform high-quality delayed enhancement imaging
Afshin Farzaneh-Far, MD, PhD, University of Illinois
Learning Objectives*
> Understand the basic principles of the segmented inversion recovery fast gradient echo pulse sequence commonly used for delayed enhancement imaging
> Know how to adjust the timing parameters and settings of the sequence for optimal imaging under different conditions
> Be aware of some common pitfalls and artifacts as well as how to overcome

* At the conclusion of this presentation, the attendee should be better able to
11.30 am
How to optimize MR angiography
J. Paul Finn, MD, UCLA
Learning Objectives*
> Understand the physical principals of MR angiography
> Prescribe imaging parameters for MR angiography
> Interpret MR angiography

11.50 am
How to assess the coronary arteries using CMR
Hajime Sakuma, MD, Mie University Hospital
Learning Objectives*
> Know acquisition methods and recent advances of coronary MR angiography
> Understand how to interpret coronary MR angiography
> Explain clinical indications and limitations of coronary MR angiography

12.10 pm
How to assess myocardial iron overload
Lisa Anderson, MD, St. George's Hospital
Learning Objectives*
> Basic understanding of the presentation, diagnosis and management of cardiac iron overload
> The importance of cardiac MRI assessment of iron
> How to measure cardiac iron overload by MRI

1.50 pm
CMR to assess the etiology of cardiomyopathy
Hassan Abdel-Aty, FESC, MD, MSc, Berlin Medical University
Learning Objectives*
> Appreciate the basic CMR imaging protocol and analysis tools in the setting of cardiomyopathy
> Appreciate the value of CMR to differentiate non-ischemic from ischemic cardiomyopathy and to be able to use CMR to further elucidate the etiology of the clinically frequent non-ischemic cardiomyopathies
> Appreciate the additional value of CMR compared to other methods used to assess non-ischemic cardiomyopathy stressing the ability of advanced tissue characterization, risk stratification and assessment of prognosis

2.10 pm
CMR in the assessment of possible arrhythmogenic right ventricular dysplasia
Harikrishna Tandri, MD, Johns Hopkins University School of Medicine
Learning Objectives*
> Understand the role of MR imaging in ARVD and the common MRI abnormalities of the right ventricle in ARVD
> Perform an MRI study using the right protocol for evaluation of ARVD
> Understand the role of quantitative MRI variables and delayed enhancement to diagnose ARVD

2.30 pm
CMR in suspected acute myocarditis
Ali Yilmaz, MD, Robert Bosch Krankenhaus Stuttgart
Learning Objectives*
> Understand the principles of state-of-the-art methods (invasive as well as non-invasive) for evaluation of suspected acute myocarditis
> Understand the strengths and limitations of CMR for evaluation of suspected acute myocarditis
> Better assess the diagnostic value of non-invasive CMR results in comparison to invasive EMB results in patients with suspected acute myocarditis

2.50 pm
CMR in myocardial ischemia
Theodoros Karamitsos, MD, PhD, University of Oxford
Learning Objectives*
> Understand the basic concepts of first-pass perfusion imaging with CMR
> Understand the basic concepts of dobutamine stress CMR
> Understand the strengths & limitations of CMR compared to other ischemia testing techniques (e.g. dobutamine stress echo, SPECT)

* At the conclusion of this presentation, the attendee should be better able to
Physician Pre-conference Course (cont’d)

Athena Auditorium

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
<th>Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10 pm</td>
<td>CMR in myocardial viability</td>
<td>Joseph Selvanayagam, MBBS, FRACP, Flinders Medical Centre</td>
<td></td>
</tr>
</tbody>
</table>
| | Learning Objectives* | | > Understand the importance of assessing viability
| | > Techniques for CMR assessment | | > Evidence for benefit
| 3.30 pm – 4.00 pm | **Refreshment Break** | |
| 4.00 pm – 6.00 pm | **Clinical applications of CMR – Part 2** | |
| 4.00 pm | **CMR in congenital heart disease** | Vivek Muthurangu, MD, MRCPCH, UCL London |
| | Learning Objectives* | | > Understand role of CMR in congenital heart disease (CHD)
| | > Optimize CMR for CHD | | > Know about future directions
| 4.20 pm | **CMR in valvular disease** | Federico Mordini, MD, Veterans Affairs Medical Center |
| | Learning Objectives* | | > Apply CMR imaging techniques in the assessment of stenotic valvular lesions
| | > Apply CMR imaging techniques in the assessment of regurgitant valvular lesions | | > Explain the limitations of CMR and the relative strengths of other modalities in the assessment of valvular heart disease
| 4.40 pm | **CMR in pericardial disease** | Amit R. Patel, MD, University of Chicago |
| | Learning Objectives* | | > Understand the clinical potential of CMR in the evaluation of pericardial diseases
| | > Understand CMR techniques that might be used in the evaluation of pericardial diseases | | > Understand the spectrum of pericardial diseases that might be referred to CMR
| 5.00 pm | **CMR in the assessment of intracardiac mass** | Raad Mohiaddin, MD, PhD, FRCR, FRCP, FESC, Royal Brompton Hospital |
| | Learning Objectives* | | > Know the prevalence of cardiac masses and be familiar with pathological classification
| | > Know a comprehensive CMR protocol for assessing cardiac tumors | | > Learn a systematic method of assessing the extend; implication and complications of cardiac tumors
| 5.20 pm | **Knowing when to choose CMR in a multimodality imaging climate** | Marcus Y. Chen, MD, National Institutes of Health |
| | Learning Objectives* | | > Understand the strengths of and indications for CMR in the evaluation of common cardiovascular disease processes
| | > Appreciate the limitations and weakness of CMR in particular situations | | > Understand how multiple imaging modalities may be complementary
| 5.40 pm | **Panel discussion of submitted questions** | |

At the conclusion of this presentation, the attendee should be better able to...
SCMR/EuroCMR PRE-CONFERENCE COURSES

FEBRUARY 3, 2011

Congenital Pre-conference Course
8.00 am – 6.00 pm Room Clio

Moderators:
Mark Fogel, MD, FACC, FAHA, FAAP,
Childrens Hospital of Philadelphia
Andrew M. Taylor, MD, UCL Institute of Child Health

8.00 am – 10.00 am
Basics

8.00 am
MR physics
John P. Ridgway, PhD, University of Leeds
Learning Objectives*
> Identify the key components of an MR system and understand the origin of the MR signal
> Understand how anatomical and functional MR images are formed of the beating heart, and the factors that affect soft tissue contrast and the appearance of flowing blood
> Understand the most commonly used nomenclature and the key parameters associated with the principal MR imaging techniques

8.45 am
Normal and congenital anatomy – anatomical description with imaging correlates
Michael Ashworth, MD, Great Ormond St. Hospital for Children
Learning Objectives*
> Identify the anatomical components of the normal heart
> Identify variations from normal in cardiac anatomy
> Identify the anatomical features of the commoner forms of structural congenital heart disease

9.30 am
Patient set-up
Wendy Norman, DCR(R), DRI, University College London
Learning Objectives*
> Check the patient for any contraindications to the cardiac MRI examination, carry out the procedure safely, and safety within the MRI department particularly in the case of cardiac arrest of the patient
> Explain thoroughly the procedure to a patient and then position them comfortably and correctly on the scanner.
> Understand how the effects of incorrect set up of the patient can affect quality of the examination

8.00 am – 6.00 pm Room Clio

10.30 am – 12.30 pm

Methods

10.30 am
MR and CT – which method to use
Aloha Meave, MD, Ciudad Universitaria Mexico
Learning Objectives*
> Understand the applications of computed tomography in congenital heart disease
> Understand the applications of magnetic resonance in congenital heart disease
> Be capable of applying both methods in a complementary way in complex congenital heart disease

11.00 am
3D MR imaging – MR angiography and b-SSFP
Lars Grosse-Wortmann, MD, Hospital for Sick Children
Learning Objectives*
> Understand the indications and limitations of MR angiography and 3D – bSSFP imaging in congenital heart disease
> Be familiar with the practical implications and “how to” aspects of MR angiography and 3D – bSSFP
> Know about the pitfalls of MR angiography and 3D – bSSFP imaging in congenital heart disease

11.30 am
Flow and function for CHD
Arno AW Roest, MD, PhD
Leiden University Medical Center
Learning Objectives*
> The advantages and drawbacks of the different methods used to assess blood flow in patients with congenital heart disease
> The advantages and drawbacks of using 2D and 3D velocity encoded MR for the assessment of valvular function and diastolic function
> How CMR can be used to assess cardiac dimensions and function

12.00 pm
Late gadolinium enhancement and myocardial perfusion in CHD
Matthew Harris, MD, The Children’s Hospital of Philadelphia
Learning Objectives*
> Understand the methodology and principles of applying myocardial perfusion imaging to children and adults with congenital heart disease
> Understand the methodology and principles of applying late gadolinium enhancement imaging to children and adults with congenital heart disease
> Identify which forms of congenital heart disease are appropriate for applying late gadolinium enhancement and myocardial perfusion magnetic resonance imaging

12.30 pm – 1.30 pm Lunch (on own)

* At the conclusion of this presentation, the attendee should be better able to
1.30 pm – 3.30 pm
Clinical applications – Part 1: initial diagnosis and follow-up of CHD

1.30 pm
Imaging shunts
Willem A. Helbing, MD, Erasmus MC-Sophia
Learning Objectives*
> Know the indications for assessment of shunts with cardiovascular MRI
> Know how to assess shunts in different types of congenital heart disease
> Know which techniques to apply in the assessment of shunt size

2.00 pm
Imaging aortic pathologies
Elie Mousseaux, MD, PhD, Hôpital Européen Georges Pompidou
Learning Objectives*
> Understand appropriate clinical role of MRI in congenital aortic diseases for diagnosis and follow up
> Estimate standard anatomy and velocity CMR measurements in case of aortic lesions of the aorta
> Understand potential contributions of MRI associated with pressure estimates to functional imaging of the thoracic aorta

2.30 pm
Coronary artery imaging in CHD
Gerald F. Greil, MD, King’s College, London
Learning Objectives*
> Know the indications for coronary artery imaging in CHD
> Know different techniques to image coronary arteries in CHD
> Understand the principles of an optimized 3D whole heart approach to image coronary arteries in CHD

3.00 pm
Imaging tetralogy of Fallot
Lucia J.M. Kroft, MD, PhD, Leiden University Medical Center
Learning Objectives*
> Select the appropriate MR imaging sequences in evaluating patients with TOF
> Choose appropriate image post processing techniques
> Identify major complications in patients with TOF

3.30 pm – 4.00 pm
Refreshment Break

4.00 pm – 6.00 pm
Clinical applications – Part 2: initial diagnosis and follow-up of CHD

4.00 pm
Imaging transposition of the great arteries
Matthias Gutberlet, MD, University Leipzig
Learning Objectives*
> Distinguish different types of transposition of the great arteries (TGA)
> Differentiate surgical techniques to correct TGA
> Image pre- and postoperative patients with TGA by MRI including volumetric and functional assessment of ventricular function and flow measurements

4.30 pm
Imaging HLHS, Glenn & Fontan
Andrew Powell, MD, Children’s Hospital Boston
Learning Objectives*
> Define the indications for CMR in HLHS, Glenn and Fontan circulations
> Understand an imaging protocol for patients with single ventricle heart disease
> Know the limitations of CMR in single ventricle heart disease

5.00 pm
Case presentations – Question and answer session with the panel
Mark Fogel, MD, FACC, FAHA, FAAP, Childrens Hospital of Philadelphia
Andrew M. Taylor, MD, UCL Institute of Child Health

* At the conclusion of this presentation, the attendee should be better able to
Basic Science Pre-conference Course:
“Innovations in Cardiac MR Pulse Sequences”
8.00 am – 6.00 pm Hermès Auditorium

This session is endorsed by the ISMRM

Moderators:
Michael Jerosch-Herold, PhD, Brigham and Women’s Hospital
Sebastian Kozerke, PhD, University and ETH Zurich
Michael Markl, PhD, University Hospital Freiburg

8.00 am
Introduction

8.10 am
CMR: What are the unresolved technical challenges?
Leon Axel, PhD, MD, NYU Langone Medical Center

Learning Objectives*
> Describe principal technical challenges of CMR
> Describe principal current approaches to meeting technical challenges of CMR
> Describe potential future approaches to meeting technical challenges of CMR

8.30 am – 10.00 am
Compressed Sensing and Accelerated MRI in CMR

8.30 am
Compressed sensing: Promise for CMR and current status
Michael Lustig, PhD, University California

Learning Objectives*
> Understand the basic theory of compressed sensing
> Understand the application of compressed sensing to CMR, benefits and pitfalls
> Know the current status of compressed sensing CMR

8.45 am
How fast does CMR get?
Sebastian Kozerke, PhD, University and ETH Zurich

Learning Objectives*
> Understand the difference between different CMR scan acceleration approaches
> Describe the fundamental limits to CMR scan acceleration
> Select the appropriate means of CMR scan acceleration depending on application

9.00 am
K-space trajectories and reconstruction algorithms
Craig H. Meyer, PhD, University Virginia

Learning Objectives*
> Understand the basic theory of compressed sensing
> Understand the application of compressed sensing to CMR, benefits and pitfalls
> Know the current status of compressed sensing CMR

9.15 am
Compressed sensing for myocardial perfusion imaging
Reza Nezafat, PhD, Harvard Medical School

Learning Objectives*
> Understand the potential of compressed-sensing in accelerating image acquisition for CMR
> Understand the utility of compressed-sensing beyond image acceleration
> Understand limitations and future needs

9.30 am
Real-time cine with accelerated CMR
Bob Hu, MD, Stanford University

Learning Objectives*
> Understand the clinical indications for real-time cardiovascular MR examination
> Select & perform relevant real-time examination of the cardiovascular system
> Discuss and interpret the pros and cons of real-time cardiovascular MR examination

10.00 am – 10.30 am Refreshment Break

10.30 am – 12.30 pm
Motion Correction and Self-gated Techniques

10.30 am
Motion correction methods
Matthias Stuber, PhD, CHUV University of Lausanne

Learning Objectives*
> Know standard techniques for motion suppression
> Are introduced into new self-gated techniques
> Understand current status of self-gating techniques

10.50 am
Hybrid MRI/US methods for motion correction
Matthias Günther, PhD, Mediri GmbH

Learning Objectives*
> Name potential problems when combining ultrasound imaging with MRI
> Appreciate the benefits of using ultrasound imaging within the MR-scanner
> Explain how real-time tracking can be performed on ultrasound images

11.20 am
CMR coronary imaging: what works best to correct motion
Himanshu Bhat, PhD, Siemens Medical Solutions USA Inc.

Learning Objectives*
> Identify various classes of motion correction techniques used in coronary MRA
> Identify the advantages and disadvantages of the various motion correction techniques
> Pick a motion correction technique based on specific requirements

* At the conclusion of this presentation, the attendee should be better able to...
SCMR/EuroCMR PRE-CONFERENCE COURSES
FEBRUARY 3, 2011

11.40 am
Motion correction by post-processing: reproducing Kernel Hilbert spaces and other approaches
Pierre-André Vuissoz, PhD, CHU de Nancy
Learning Objectives*
> Describe several limitations of breath hold cardiac MRI acquisitions
> Name at least one MRI reconstruction using motion correction methods on a free breathing cardiac MRI acquisition
> Describe that cardiac images at a given cardiac and respiratory phase can be reconstructed from free-breathing continuously acquired data by an appropriate interpolation method

12.10 pm
Self-gating: reading heart-beats in K-space
Robert Manka, MD, University Hospital Zurich
Learning Objectives*
> Understand the self-gating principle and its limitations
> Understand the clinical indications for self-gating
> Outline future applications of self-gating

12.30 pm – 1.30 pm Lunch (on own)

1.30 pm – 2.30 pm
Quantifying cardiovascular flow and motion

1.30 pm
Time-resolved 3D vector flow velocity imaging: methods and applications
Michael Markl, PhD, University Hospital Freiburg
Learning Objectives*
> Understand the methods and principles of time-resolved 3D velocity encoded cardiovascular MR imaging
> Identify potential applications of flow-sensitive 4D MR imaging in the cardiac and vascular system
> Review the current state of the literature regarding successful applications of 3D velocity encoded MRI and understand its limitations and potential for the comprehensive evaluation of cardiovascular disease

1.45 pm
Myocardial phase-contrast velocity imaging: mind your VENC!
Bernd Jung, PhD, University Hospital Freiburg
Learning Objectives*
> Understand and perform myocardial phase-contrast velocity imaging
> Know how to evaluate the data provided by myocardial phase-contrast velocity imaging
> Know the strengths and weaknesses of myocardial phase-contrast velocity imaging

2.00 pm
Techniques for pulse wave velocity measurements
Christopher Hardy, PhD, GE Global Research
Learning Objectives*
> Describe the relationships among arterial pulse wave velocity, compliance, distensibility, and Young's modulus
> Compare and contrast the main MR pulse sequences/methods for determination of arterial pulse wave velocity
> Describe the link between abnormal aortic compliance and various disease states, and the effect of abnormal aortic compliance on heart function

2.15 am
Techniques for assessing diastolic function
JJM Westenberg, PhD, Leiden University Medical Center
Learning Objectives*
> Understand why trans-valvular flow assessment with MRI with retrospective valve tracking is more accurate than without
> How to obtain parameters describing diastolic function from transvalvular flow wave form analysis
> How to incorporate myocardial motion measurement in diastolic function assessment with MRI

2.30 pm – 3.30 pm
Novel myocardial perfusion techniques

2.30 pm
Arterial spin labeling
Krishna S. Nayak, PhD, University of Southern California
Learning Objectives*
> Explain how arterial spin labeling is applied to the measurement of myocardial blood flow
> Explain the advantages of myocardial ASL compared to existing perfusion imaging techniques
> List the current limitations of myocardial ASL approaches

2.50 pm
HYPR
Rohan Dharmakumar, PhD, Northwestern University

3.10 pm
Arterial input sampling and dual contrast techniques
Peter David Gatehouse, PhD, Royal Brompton Hospital
Learning Objectives*
> Understand the SNR vs non-linearity dilemma associated with T1-weighting in first-pass Gd-contrast agent myocardial perfusion
> Understand why quantification of myocardial perfusion (or reserve) requires different CMR parameters from visual assessment
> Describe three published solutions to the dilemma in objective 1

3.30 pm – 4.00 pm Refreshment Break

* At the conclusion of this presentation, the attendee should be better able to
Basic Science Pre-conference Course (cont’d) | Hermes Auditorium

4.00 pm – 4.30 pm
Angiography and vessel wall imaging

4.00 pm
Non-contrast MRA techniques
Gerhard Laub, PhD, Siemens Healthcare USA

Learning Objectives*
> Understand the underlying physical principles of non-contrast MRA techniques
> Understand the strengths, weaknesses, and pitfalls of non-contrast MRA techniques in comparison to contrast-enhanced MRA
> Select optimization criteria for improving non-contrast MRA results

4.15 pm
Three dimensional vessel wall and plaque imaging
Yiu-Cho Chung, PhD, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science

Learning Objectives*
> Know the importance of blood suppression in plaque and vessel wall imaging, and various methods this can be done in MRI
> Understand the motivation for three dimensional vessel wall imaging and the MRI methods available
> Know how three dimensional dark blood imaging techniques are used in wall imaging of various vessels

4.30 pm – 5.30 pm
Tissue characterization techniques

4.30 pm
Fat and water separated imaging in the heart: tissue characterization and artifact reduction
Peter Kellman, PhD, National Institutes of Health

Learning Objectives*
> Understand applications for fat and water separated imaging in cardiac MRI
> Understand the methodology of fat and water separated imaging using multi-echo Dixon-like approaches
> Understand the application of fat and water separated imaging to late enhancement and the benefit for artifact reduction

4.45 pm
Myocardial edema imaging techniques
Anthony H. Aletras, PhD, University of Central Greece

Learning Objectives*
> Understand the basic MRI physics of pulse sequences used for imaging edema
> Understand how to use the techniques in daily clinical scans
> Describe advantages and disadvantages of each technique

5.00 pm
Myocardial oxygenation imaging: new methods for ischemia detection
Jie Zheng, PhD, Washington University of School Medicine

Learning Objectives*
> Understand basic concept and mechanism for assessing myocardial oxygen content using CMR
> Learn various pulse sequences that generate image contrast for qualitative and quantitative measurements of myocardial oxygenation using CMR methods
> Have a broad knowledge on current status of clinical applications of myocardial oxygenation using CMR approaches

5.15 pm
BOLD techniques in the heart
Rohan Dharmakumar, PhD, Northwestern University

Learning Objectives*
> Understand the biophysical concepts behind myocardial BOLD imaging
> Explain the advantages and disadvantages of various oxygen-sensitive approaches in the myocardium
> Describe the state-of-the-art methods used in myocardial BOLD imaging with ties to high field imaging

5.30 pm – 6.00 pm
Closing remarks

Where do we go from here?
Roderic Pettigrew, MD, PhD, National Institutes of Health

* At the conclusion of this presentation, the attendee should be better able to
10th Annual Meeting of the Working Group on Cardiovascular Magnetic Resonance Imaging of the European Society of Cardiology

May 17 - 19, 2012
Vienna, Austria

For preliminary program and more information please see our website:

eurocmr2012.medconvent.at

Join the ESC Working Group on Cardiovascular Magnetic Resonance and become a member of the ESC

Membership is free and can be done in one click on our website:

www.escardio.org/eurocmr
CONCURRENT SESSIONS 7.00 am – 8.00 am

C G

Physics for Physicians 1
How an MRI Scan is Performed
7.00 am – 8.00 am Athena Auditorium

7.00 am

MRI systems & spin physics
John P. Ridgway, MD, University of Leeds
Learning Objectives*
> Understand the key components of an MRI system and their purpose
> Understand the origin of the MR signal
> Understand relaxation mechanisms and the factors that relaxation times (T1 and T2) in different biological tissues and how this leads to the unique soft tissue contrast provided by MRI

7.30 am

Echoes and spatial localization
Martin John Graves, PhD, Cambridge University Hospitals Trust
Learning Objectives*
> Understand the formation of echoes in an MRI pulse sequence
> Understand the process of spatial localization in an MRI pulse sequence
> Understand the role of the Fourier transform in producing an MRI image

C G

Case Review Session: Cases from France – Focus on Artifacts and Variations of Normal
7.00 am – 8.00 am Room Clio

Cases from France – pitfalls and variants of normal in the diagnosis of cardiomyopathies, IHD, masses and valve disease
Moderator:
Elie Mousseaux, MD, PhD, Hôpital Européen Georges Pompidou
Learning Objectives*
> Understand common artifacts and pitfalls in cine, perfusion and velocity-encoded CMR
> Avoid misinterpretation in CMR due to variation of normal anatomy or imaging artifact
> Manage some difficulties that can be found in CMR

Presenters:
Alban Redheuil, MD, PhD, Hôpital Européen Georges Pompidou
Pierre Croisille, MD, PhD, Hôpital Cardiovasculaire Louis Pradel
Philippe Germain, MD, Université de Strasbourg
Alexis Jacquier, MD, PhD, Hopital la Timone
Elie Mousseaux, MD, PhD, Hôpital Européen, Georges Pompidou

Welcome and Opening Plenary
8.00 am – 8.15 am Athena Auditorium

Eike Nagel, MD, President of SCMR
Massimo Lombardi MD, Immediate Past Chair of the CMR Working Group of the ESC

B C G

Cardiology Concepts for Non-Cardiologists 1: Normal Physiology of the Cardiovascular Systems
7.00 am – 8.00 am Room Thalie/Erato

Understanding how the heart works: Cardiac mechanics, deformation, load and contractility
Frank E. Rademakers, MD, PhD, University Hospitals Leuven
Learning Objectives*
> Understand the link between anatomy and function of the heart
> Define contractility
> Understand deformation and its relation with loading conditions

B C G

The Impact of CMR on Clinical Decision Making
8.15 am – 10.00 am Athena Auditorium

Moderators:
Dudley Pennell, MD, FESC, FACC, FRCP, Royal Brompton Hospital
Sven Plein, MD, PhD, University of Leeds

8.15 am

The future role of cardiovascular imaging
J.J. Bax, MD, PhD, Leiden University Medical Center
Learning Objectives*
> Understand the different imaging modalities versus detection of CAD
> Understand the issue of ischemia versus coronary anatomy
> Understand the merits of invasive and non-invasive imaging of CAD
At the conclusion of this presentation, the attendee should be better able to:

Cardiovascular imaging: why we need randomized trials

Michael S. Lauer, MD, National Institutes of Health

Learning Objectives
- Appreciate the weaknesses of cardiovascular imaging studies that focus on diagnosis and prognosis
- Understand that prediction and risk stratification do not necessarily imply clinical value
- Describe different clinical trial designs that may be applicable to assessment of cardiovascular imaging

Evidence based CMR: accuracy, outcome and comparative effectiveness

Eike Nagel, MD, PhD, King's College London

Learning Objectives
- Describe the evidence to use CMR in clinical routine
- Describe ongoing major trials to deliver such evidence
- Describe knowledge gaps for clinical applications of CMR

Late breaking results from the Euro CMR registry

Heiko Mahrholdt, MD, Robert-Bosch-Krankenhaus Stuttgart

Learning Objectives
- Understand clinical use and impact on patient management of CMR in European multicenter clinical practice
- Describe the safety of the use of gadolinium in cardiovascular MR imaging (towards a potential FDA approval in the future)
- Describe preliminary follow-up results of the HCM and suspected CAD protocol

Panel discussion

10.30 am

Transcatheter valve implantation: where are we now and where are we going

Philipp Bonhoeffer, MD, Nationwide Children’s Hospital

Learning Objectives
- Understand the role of imaging in the design of new medical devices
- Understand the state of the art of transcatheter valve implantations in congenital heart disease
- Understand the impact of valve implantation on cardiac physiology

10.45 am

CMR to select patients for transcatheter valves

Sohrab Fratz, MD, PhD, German Heart Centre Munich

Learning Objectives
- Understand the role of CMR for selecting patients for transcatheter valves
- Understand benefits of CMR for selecting patients for transcatheter valves
- Understand the limitation of CMR for selecting patients for transcatheter valves

11.00 am

Multi-modality imaging to assess transcatheter valve implantation outcomes

Philipp C. Lurz, MD, University Leipzig

Learning Objectives
- Understand the consequences of chronic right ventricular pressure and/or volume overload due to right ventricular outflow tract dysfunction in patients with congenital heart disease
- Understand the potential of reversibility of chronic pathological right ventricular loading conditions after percutaneous pulmonary valve implantation in patients with congenital heart disease
- Choose the right imaging modality and technique for assessment of procedural success after percutaneous pulmonary valve implantation, with the aim to improve selection for transcatheter valve intervention and ultimately long-term

11.15 am

Use of imaging data to model the heart and valves

Tommaso Mansi, PhD, INRIA Sophia-Antipolis

Learning Objectives
- Grasp the motivations behind computational modeling of the heart and valves, and the clinical perspectives that may result
- Understand the underlying principles of computational models of cardiac electro-mechanics and valves personalized from MRI
- Personalized models in practice: in-silico pulmonary valve replacement in patients with corrected tetralogy of Fallot for model-based therapy planning and patient management

At the conclusion of this presentation, the attendee should be better able to...
11.30 am
Transapical aortic valve replacement using real-time MRI guidance
Keith A. Horvath, MD, National Institutes of Health
Learning Objectives*
> Understand the impact imaging has on the success of transapical aortic valve replacements
> Identify the limitations the various imaging modalities have regarding procedure guidance
> Understand the advantages of device composition and construction in facilitating transapical aortic valve replacements

11.45 am
Panel discussion

G

Oral Abstract Session 1
Early Career Award – Clinical

10.30 am – 12.00 pm
Room Thalie/Erato

Moderators:
Sven Plein, MD, PhD, University of Leeds
Eike Nagel, MD, King’s College London

10.35 am
Time-dependency, predictors and impact on outcome of infarct transmurality assessed by magnetic resonance imaging in patients with st-elevation myocardial infarction reperfused by primary percutaneous intervention
Suzanne de Waha, MD, University of Leipzig – Heart Center

10.47 am
Combined stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance provides robust prognostic information to cardiac events
Otavio Coelho-Filho, MD, Brigham and Women’s Hospital

11.09 am
Magnetic resonance imaging assessment of myocardial inflammation in 132 unselected, consecutive patients with clinical suspicion of acute or chronic myocarditis - are we as good as we thought?
Philipp Lurz, MD, University of Leipzig – Heart Center

11.11 am
Derivation and validation of a prognostic prediction rule from clinical and stress CMR data characterizes cardiac prognostication in patients with suspected myocardial ischemia
Otavio Coelho-Filho, MD, Brigham and Women’s Hospital

11.23 am
Relation of microvascular dysfunction to exercise capacity and symptoms in patients with severe aortic stenosis
Christopher D. Steadman, MB ChB, University of Leicester

11.35 am
Strain-encoded cardiac magnetic resonance during high-dose dobutamine stress testing for the estimation of cardiac outcomes. Comparison to clinical parameters and conventional wall motion readings
Gitsios Gitsioudis, Sr, MD, University Clinic of Heidelberg

11.47 am
Infarct tissue heterogeneity by contrast-enhanced MRI is a novel predictor of mortality in patients with coronary artery disease with reduced left ventricular systolic function
Eri Watanabe, MD, PhD, Brigham and Women’s Hospital
10.47 am
Determination of the myocardial area at risk after reperfused acute myocardial infarction with different imaging techniques: cardiac magnetic resonance imaging, multidetector computed tomography and histopathological validation
Pierre Croisille, MD, PhD, Hôpital Cardiovasculaire Louis Pradel

10.59 am
A comparison of single-channel and multi-channel RF transmit coil for SSFP cine imaging at 3 Tesla
Shazia Hussain, MD, NIHR Biomedical Research Centre-King’s College London

11.11 am
Reproducibility of coronary vessel wall imaging techniques
Andrew D. Scott, MSc, Imperial College London

11.23 am
Image quality and diagnostic accuracy of inline motion-corrected (moco) first-pass stress myocardial perfusion images
Sujata M. Shanbhag, MD, National Institutes of Health

11.37 am
High field MR carotid vessel wall imaging: reproducibility of five different MR-weightings
Eleanore S. Kroner, MD, Leiden University Medical Center

11.47 am
Adiabatic T2-preparation modules optimized for robustness toward cardiac motion and flow – a comparison with existing techniques at 3 Tesla
Wolfgang G. Rehwald, PhD, Siemens Healthcare and Duke University

SCMR Business Meeting (Members only)
12.00 pm – 12.30 pm Athena Auditorium

12.30 pm – 1.30 pm Lunch (on own)

Exhibits
Poster Viewing – not accredited for CME
(Authors not present)

CONCURRENT SESSIONS 1.30 pm – 3.00 pm

G
Lecture Session:
CMR in Non-Ischemic Heart Disease

1.30 pm – 3.00 pm Athena Auditorium
Moderators:
Karen Ordovas, MD, University of California, San Francisco
James Moon, MD, The Heart Hospital London

1.30 pm
Cardiomyopathies – issues to be solved by imaging
Stefan Neubauer, MD, John Radcliffe Hospital
Learning Objectives*
> Understand what CMR contributes to diagnosis of cardiomyopathies
> Understand what CMR can currently not answer regarding the diagnosis of cardiomyopathies
> Understand the prospects and opportunities for overcoming the current imaging limitations

1.45 pm
Technical developments for early detection of myocardial injury: which method is best?
Anthony H. Aletras, PhD, University of Central Greece
Learning Objectives*
> Understand the basic MRI physics of pulse sequences used for early detection of myocardial injury
> Understand how each pulse sequence addresses a different type of injury
> Describe advantages and disadvantages of each technique

2.00 pm
Optimizing delayed enhancement imaging in storage and deposit disease
Udo Sechtem, MD, Robert Bosch Krankenhaus
Learning Objectives*
> Identify patients in whom CE-CMR might be diagnostically useful
> Identify CE patterns specific storage diseases
> Care for patients with cardiomyopathies

2.15 pm
Myocardial inflammation – is CMR ready to guide patient management?
Jeanette Schulz-Menger, MD, FESC, Franz-Volhard-Klinik, Charité
Learning Objectives*
> Explain the different features of myocardial inflammation
> Explain the capabilities of non-invasive imaging
> Apply the CMR-protocol
> Know the details of interpretation
> Use CMR in this setting

* At the conclusion of this presentation, the attendee should be better able to
2.30 pm
T2* – challenge or routine application worldwide –
towards high and ultrahigh field
Thoralf Niendorf, PhD, Max-Delbrueck-Center for Molecular Medicine
Learning Objectives*
> Understand the role of T2* imaging/mapping in clinical CMR
> Gain an insight into the basics and physics of T2*
 mapping/imaging
> Explore emerging T2* imaging/mapping technology and
 its implications for future clinical CMR applications
> Discuss solved problems and unmet needs of T2*
 imaging at high and ultrahigh field strengths

2.45 pm
Panel discussion

2.23 pm
Optimal assessment of right ventricular function using
cardiac magnetic resonance cine imaging after Mustard
palliation for transposition of the great arteries
Laura Jimenez-Juan, MD, Toronto General Hospital

2.35 pm
A T2* MRI prospective survey on heart iron in thalassemia
major patients treated with deferasirox versus deferiprone
and desferrioxamine in monotherapy
Alessia Pepe, MD, PhD, “G. Monasterio” Foundation and
Institute of Clinical Physiology

2.30 pm
Oral Abstract Session 3: Congenital
New Frontiers in Therapy or Patient Prognostication
1.30 pm – 3.00 pm
Room Thalie/Erato
Moderators:
Tal Geva, MD, Children’s Hospital Boston
Andrew M. Taylor, MD, UCL, Institute of Child Health

1.35 pm
Worldwide survey of T2* cardiovascular magnetic
resonance in thalassaemia
John-Paul Carpenter, MBBS BSc, Royal Brompton and
Harefield NHS Trust

1.47 pm
The evaluation of right and left ventricular morphology
by CMR with comparison to recipient heart after heart
transplant: a surgical perspective
Nicholas Farber, MD, Allegheny General Hospital

1.59 pm
Presence of mechanical dyssynchrony in Duchenne
Muscular Dystrophy: A cardiac MRI study utilizing
cross correlation delay
Kan N. Hor, MD, Cincinnati Children’s Hospital Medical
Center

2.11 pm
Prospective comparison on cardiac iron by MR in
thalassemia major patients treated with combination
deferipron-desferrioxamine versus deferipron and
desferrioxamine in monotherapy
Alessia Pepe, MD, PhD, “G. Monasterio” Foundation and
Institute of Clinical Physiology

1.30 pm – 3.00 pm
Oral Abstract Session 4:
Early Career Award – Basic Science
Hermes Auditorium
Moderators:
Frederick H. Epstein, PhD, University of Virginia Schools
of Medicine and Engineering
Debiao Li, PhD, Sinai Medical Center, UCLA

1.35 pm
An area-based imaging biomarker for characterizing
coronary artery stenosis with myocardial BOLD MRI
Sotirios A. Tsaftaris, PhD, Northwestern University

1.47 pm
Molecular MRI of acute necrosis with a novel DNA-
binding gadolinium chelate: kinetics of cell death
and clearance in infarcted myocardium
Shuning Huang, PhD, Massachusetts General Hospital
Validation of blood flow partitioning in 4D phase contrast CMR measurements using Lagrangian coherent structures

Johannes Töger, MSc, Skåne University Hospital, Lund University

2.11 pm

Virtual dye angiography: flow visualization for MRI-guided interventions using endogenous contrast

Ashvin K. George, PhD, National Institutes of Health

2.23 pm

Isotropic non-contrast whole-heart lumen only coronary MRA using local re-inversion and 2D-SENSE at 3 Tesla

Harsh K. Agarwal, PhD, Johns Hopkins University

2.35 pm

CMR tagging in the polar coordinate system

Abbas N. Moghaddam, PhD, University of California, Los Angeles

2.47 pm

Serial diffusion tensor MRI and tractography of the mouse heart in vivo: impact of ischemia on myocardial microstructure

Shuning Huang, PhD, Massachusetts General Hospital

Refreshment Break

3.00 pm – 3.30 pm

Exhibits

Poster Viewing – not accredited for CME

(Authors not present)

Concurrent Sessions 3.30 pm – 5.00 pm

C Lecture Session:

Cutting Edge CMR in Children

3.30 pm – 5.00 pm

Athena Auditorium

Moderator:

Albert de Roos, MD, Leiden University Medical Center

3.30 pm

Real time phase encoded velocity mapping

Michael S. Hansen, PhD, National Institutes of Health

Learning Objectives

- Identify the needs for real-time velocity mapping
- Understand the key principles used in accelerating velocity mapping
- Understand some of the artifacts that are associated with the compromised in real-time velocity mapping

Functional vascular imaging in children

Vivek Muthurangu, MD, MRCPCH, UCL London

Learning Objectives

- Understand new techniques for assessing vascular function
- Know which patient groups to perform them in
- Understand future MR directions

Exercise CMR in CHD

Kevin K. Whitehead, MD, PhD, Children’s Hospital of Philadelphia

Learning Objectives

- Understand the benefits of exercise CMR in the management of patients with congenital heart disease
- Know the different strategies for implementing exercise CMR and their various advantages and limitations
- Gain insight into the use of CMR to study exercise physiology in patients with congenital heart disease

Virtual surgery

Gerald F. Greil, MD, King’s College London

Learning Objectives

- Understand different image postprocessing techniques
- Know what the technical background of virtual surgery is
- Understand how virtual surgery could be applied in the future

4D flow applications

Michael D. Hope, MD, UCSF

Learning Objectives

- Discuss the basics of the MR technique used for 4D flow imaging
- Discuss 4D visualization technique and calculation of secondary vascular parameters
- Discuss emerging clinical applications for 4D flow imaging

CMR guidance for device implantation and imaging of patients with pacemakers in CHD

Michael D. Puchalski, MD, University of Utah

Learning Objectives

- Know situations in which an MRI can be performed in a patient with a pacemaker
- Understand what precautions need to be taken to perform an MRI in a patient with a pacemaker
- Understand the utility of MRI guidance for interventional procedures and device placement
Oral Abstract Session 5: Clinical Role of CMR Against Other Modalities

3.30 pm – 5.00 pm

Room Thalie/Erato

Moderators:
- Richard Coulden, University of Alberta Hospitals
- Edward T. Martin, MD, Oklahoma Heart Institute

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.35 pm</td>
<td>Detection of triple vessel coronary artery disease by visual and quantitative first pass CMR myocardial perfusion imaging in the CE-MARC study</td>
<td>Neil Maredia, MB ChB, University of Leeds</td>
<td></td>
</tr>
<tr>
<td>3.47 pm</td>
<td>Evaluation of aortic valve stenosis from phase-contrast magnetic resonance data using a new automated segmentation and analysis method: comparison against Doppler Echocardiography</td>
<td>Carine Defrance, MD, Hopital Européen Georges Pompidou</td>
<td></td>
</tr>
<tr>
<td>3.59 pm</td>
<td>Myocardium at risk in ST-elevation myocardial infarction: comparison of T2-weighted edema imaging with the endocardial surface area assessed by magnetic resonance and validation against angiographic scoring</td>
<td>Georg F. Fuernau, MD, University of Leipzig – HeartCenter</td>
<td></td>
</tr>
<tr>
<td>4.11 pm</td>
<td>Impact of cardiovascular magnetic resonance assessment of ejection fraction on eligibility for implantable cardioverter defibrillators</td>
<td>Subodh B. Joshi, MBBS, MPH, St Michael’s Hospital</td>
<td></td>
</tr>
<tr>
<td>4.23 pm</td>
<td>CMR real-time, free-breathing, phase contrast flow quantification: a novel approach to assess ventricular coupling in constrictive pericarditis</td>
<td>Paaladinesh Thavendiranathan, MD, MSc, The Ohio State University</td>
<td></td>
</tr>
<tr>
<td>4.35 pm</td>
<td>Non-invasive estimation of increased LV filling pressures in LV hypertrophy with normal systolic function: comparison between CMR and Doppler, validated by invasive PCWP measurements</td>
<td>Bernard P. Paelinck, MD, PhD, University Hospital Antwerp</td>
<td></td>
</tr>
<tr>
<td>4.47 pm</td>
<td>CMR in the diagnosis of acute pericarditis</td>
<td>Nicholas J. Brett, MBBS, B.Med. Sci., The Prince Charles Hospital</td>
<td></td>
</tr>
</tbody>
</table>

Case Review Session: Cases from Asia – Focus on coronary MRA

3.30 pm – 5.00 pm

Room Clio

Optimizing protocols in coronary MRA

Moderator:
- Hajime Sakuma, MD, Mie University Hospital

Learning Objectives*
- Learn the method to obtain MR images of the coronary arteries
- Know how to optimize acquisition of coronary MR angiography
- Understand clinical indications of coronary MR angiography

Lecture Session: CMR Assessment of Cardiac Metabolism

3.30 pm – 5.00 pm

Hermes Auditorium

Cardiac metabolic alterations in diabetes and ischemia/reperfusion: what we need to know

Speaker:
- Kim Connelly, PhD, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael’s, Sunnybrook Health Sciences Centre

Learning Objectives*
- Identify the key cardiac metabolic alterations in diabetes
- Identify the key metabolic alterations in ischemia/reperfusion injury
- Understand the role of normal/abnormal metabolism in health and disease

Methods for rapid imaging of DNP compounds in the heart

Speaker:
- Charles H. Cunningham, PhD, Sunnybrook Health Sciences Centre

Learning Objectives*
- Connect the physical and biological properties of 13C-labeled pyruvate with the data acquisition strategies required in cardiac metabolic studies
- Understand how a hyperpolarized 13C cardiac study is performed
- Describe the methods for imaging an array of clinically interesting intramyocardial enzyme reactions, and the associated challenges
4.00 pm
Hyperpolarized 13C-acetate to assess ischemia-reperfusion in the rat model
Arnaud Comment, PhD, École Polytechnique Fédérale de Lausanne

Learning Objectives*
> Understand the challenges and opportunities of hyperpolarized magnetic resonance
> Implement a hyperpolarized magnetic resonance experimental setup
> Evaluate the potential of hyperpolarized 13C-acetate for metabolic studies

4.15 pm
Assessment of cardiac metabolism in heart failure using hyperpolarized 13C-pyruvate
Damian Tyler, PhD, University Oxford

Learning Objectives*
> Understand the principles of hyperpolarized magnetic resonance spectroscopy
> Understand the use of hyperpolarized magnetic resonance spectroscopy in assessing cardiac metabolism
> Understand the impact of heart failure on cardiac metabolism

4.30 pm
Triglyceride metabolism and cardiac function
E. Douglas Lewandowski, PhD, UIC College of Medicine

Learning Objectives*
> Understand the direct and indirect influences of cardiac lipid metabolism on contractile function in normal and diseased hearts
> Understand and implement strategies for combined assessments of cardiac function and fatty acid metabolism
> Implement experimental schemes for stable isotope kinetics in the evaluation of metabolic flux rates and lipid dynamics in the intact heart

4.45 pm
Panel discussion

CONCURRENT SESSIONS 5.00 pm – 6.30 pm

LECTURE SESSION: CMR in Clinical Practice:
Coronary and Vascular CMR

5.00 pm
Coronary MRA: current and emerging techniques
Matthias Stuber, PhD, CHUV University of Lausanne

Learning Objectives*
> Know the correct state of the art
> Discuss advantages of coronary MRI
> Start with coronary MRA him/herself

5.0 pm
Applied MRA: thoracic aorta & pulmonary arteries
Scott K. Nagle, MD, PhD, University of Wisconsin

Learning Objectives*
> Understand the tradeoffs between spatial and temporal resolution and some typical scenarios when one or the other may be more important
> Understand how K-space acquisition order and contrast dynamics affect image quality
> Identify and explain some common artifacts seen in MRA of the aorta and pulmonary arteries

5.30 pm
Vessel wall CMR: state of the art and technical challenges
Tobias Saam, MD, University Hospital Munich

Learning Objectives*
> Understand when and how vessel wall MRI can be used in clinical routine
> Diagnose the most common cervical and cranial arteriopathies using vessel wall MRI
> Apply vessel wall MRI at his/her own facility

5.45 pm
4D flow imaging
Tino Ebbers, PhD, Linkoeping University

Learning Objectives*
> Identify different approaches for visualization and quantification of time-resolved three-dimensional (4D) blood flow
> Understand how time-resolved three-dimensional, three-directional phase-contrast MRI measurements are performed
> Understand the advantages and limitations of time-resolved three-dimensional, three-directional phase-contrast MRI

* At the conclusion of this presentation, the attendee should be better able to
6.00 pm
Atherosclerotic plaque imaging
Chun Yuan, PhD, University of Washington
Learning Objectives*
> Understand the need for atherosclerotic plaque imaging
> Identify key technical needs and abilities of plaque imaging
> Understand key features of plaque imaging

5.00 pm – 6.30 pm
Room Thalie/Erato

Moderators:
Marco Gotte, MD, PhD, VUMC
Andrew E. Arai, MD, NHLBI – National Institutes of Health

5.05 pm
Contrast enhanced CMR in acute myocarditis: what is the optimal moment for imaging?
Alexis Jacquier, MD, PhD, Hôpital la Timone

5.17 pm
Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiac magnetic resonance imaging
Marc R. Dweck, MD, Royal Brompton Hospital

5.29 pm
Safety of adenosine stress perfusion cardiac magnetic resonance imaging in patients with aortic stenosis
Stephen Darty, BS, RT-N, MR, Duke Cardiovascular Magnetic Resonance Center

5.41 pm
Beyond late gadolinium enhancement: the key role of diffuse myocardial fibrosis in severe aortic stenosis – an equilibrium contrast CMR study
Andrew S. Flett, MBBS, The Heart Hospital

5.53 pm
A new typical finding in late gadolinium enhanced images for the diagnosis of endomyocardial fibrosis – the double V sign
Adriano C. Carneiro, MD, Heart Institute -InCor- University of Sao Paulo Medical School

6.05 pm
Gender differences in left ventricular geometry and determinants of myocardial perfusion reserve in patients with severe aortic stenosis
Christopher D. Steadman, MB ChB, University of Leicester

6.17 pm
Pathological CMR findings and their clinical value in patients with high grade ventricular arrhythmias without previously known cardiac conditions
Daniel Thomas, MD, PhD, University of Bonn

5.00 pm – 6.30 pm
Room Clio

Best cases from the SCMR website competition
Moderators:
Chiara Bucciarelli-Ducci, MD, PhD, Bristol Heart Institute
Victor A. Ferrari, MD, University of Pennsylvania

Learning Objectives*
> Interpret clinical cases
> Understand strength and weaknesses of multimodality imaging
> Critically discuss clinical cases

Presenters:
Daniel Sado, Heart Hospital, London, UK
Jeanette Schulz-Menger, MD, FESC, Charité Berlin und HELIOS Klinik
Gary Cooper, University of Florida, Gainesville, USA
Patrizia Pedrotti, MD, Ospedale Niguarda Ca’ Granda Milan, Italy
Vikas K. Rathi, MD, FACC, Bon Secours Richmond Healthcare System, USA
Oral Abstract Session 7:

Novel Concepts or Techniques

5.00 pm – 6.30 pm

Hermes Auditorium

Moderators:
Daniel Ennis, PhD, University of California
Frank E. Rademakers, MD, PhD, University Hospitals Leuven

5.05 pm

043 Dynamic simulation of first pass myocardial perfusion MR with a novel perfusion phantom
Amedeo Chiribiri, MD, King’s College London

5.17 pm

044 Classification of myofibers using statistics of the helix angle: a novel approach to characterize the structure of the human heart
Choukri Mekkaoui, PhD, Harvard Medical School

5.29 pm

045 Feasibility of ultrahigh field (7 Tesla) human cardiovascular magnetic resonance imaging to assess cardiac volumes and mass validated against 1.5T and 3T field strengths
Joseph J. Suttie, MBBS FRACP, University of Oxford

5.41 pm

046 Cardiac diffusion-weighted MR imaging in recent, subacute and chronic myocardial infarction: a pilot study
Jean-Pierre Laissy, Senior, MD, PhD, Bichat University Hospital APHP

5.53 pm

047 MRI detects coronary vessel wall thickening with age in healthy subjects
Andrew D. Scott, MSc, Imperial College London

6.05 pm

048 A novel, automated method for measuring mitral valve annular velocity from standard cine TrueFISP data – a feasibility study
Peter J. Weale, BA,DCR(R), Siemens Healthcare USA

6.17 pm

049 Experimental myocarditis in rat can be detected and monitored by cardiac magnetic resonance imaging performed on a clinical 3.0T scanner
Shunit Rinkevich-Shop, MSc, Tel Aviv University

6.30 pm – 8.00 pm

Wine and Cheese Reception

Rhodes Exhibition Area

Moderated Poster Session 1

Novel Concepts, Techniques or Applications

6.30 pm – 7.30 pm

Rhodes Area

M1

Non-invasive visualization of the complete cardiac conduction system using magnetic resonance microscopy
Min-Sig Hwang, PhD, McKnight Brain Institute, University of Florida

M2

Detection of 3D cardiac metabolism after injection of hyperpolarized [1-13C] pyruvate
Francesca Frijia, MSc, Fondazione G.Monasterio CNR

M3

Quantifying right ventricular motion and strain using 3D cine DENSE MRI
Daniel A. Auger, Biomedical and Electrical Engineering, University of Cape Town

M4

Acute alcohol-induced myocardial inflammation as visualized by cardiac magnetic resonance
Anja Zagrosek, MD, HELIOS Klinikum Berlin-Buch

M5

Description of A/C gene mutation related dilated cardiomyopathy with gadolinium- enhanced magnetic resonance imaging
Miia Holmström, PhD, Helsinki University Central Hospital

M6

Impact of percutaneous coronary intervention of chronic total occlusion on left ventricular function using cardiac magnetic resonance imaging
Gideon A. Paul, MD, Kings College Hospital

At the conclusion of this presentation, the attendee should be better able to...
Concurrent Sessions 7.00 am – 8.00 am

B C G

How to Publish in JCMR

7.00 am – 8.00 am
Athena Auditorium

7.00 am
How to publish in JCMR
Dudley Pennell, MD, FESC, FACC, FRCP, Royal Brompton Hospital

Learning Objectives*
- Understand how to write a paper suitable for JCMR
- Improve likelihood of successful submission to JCMR
- Develop writing skills to improve scientific communication

B C G

Cardiology Concepts for Non-Cardiologists 2: Common Pathophysiology of the Cardiovascular System

7.00 am – 8.00 am
Room Thalie/Erato

7.00 am
What are ischemia, stunning and hibernation?
Bernhard L. Gerber, MD, PhD, FESC, Cliniques St. Luc UCL
Andreas Schuster, MD, King’s College London

Learning Objectives*
- Know about cardiovascular physiology, ischemia stunning and hibernation
- Use tests for detection of coronary artery disease employing detection of ischemia
- Use tests for detection of myocardial viability

C G

Case Review Session: Multi-modality Cases from Australia

7.00 am – 8.00 am
Room Clio

Cases from Australia: Multi-modality imaging/cardiac masses
Moderator:
Joseph Selvanayagam, MBBS, FRACP, Flinders Medical Centre

Learning Objectives*
- Understand clinical utility of CMR in the context of other imaging modalities
- Apply CMR to clinical patient management
- Understand some artifacts commonly seen in CMR

Presenters:
Jane McCrohon, St. Vincents Hospital
Christian Hamilton-Craig, University of Queensland
John Younger, MD, MS, Royal Brisbane and Women’s Hospital

C G

Physics for Physicians 2: The Physics of CMR

7.00 am – 8.00 am
Hermes Auditorium

7.00 am
Physics of cardiac imaging
Matthias Stuber, PhD, CHUV University of Lausanne

Learning Objectives*
- Understand physics relevant to cardiac MRI
- Understand sequences and motion suppression
- Understand relevant contrast enhancement mechanisms

7.30 am
Understanding ultrafast CMR pulse sequences
Sebastian Kozerke, PhD, University and ETH Zurich

Learning Objectives*
- Review basic pulse sequences used in CMR
- Describe effects of k-space undersampling on image appearance and noise
- Provide a grasp of parallel image and prior knowledge driven image reconstruction techniques

CMR Technology Updates

8.00 am – 8.30 am
Athena Auditorium

Moderators:
Eike Nagel, MD, King’s College London
Herbert Frank, MD, Landeskrankenhaus Tulln

CMR Questionnaire

8.30 am – 9.00 am
Athena Auditorium

Moderator:
Gerald M. Prohost, MD, University of Southern California
CONCURRENT SESSIONS 9.00 am – 10.30 am

Lecture Session:
Myocardial Perfusion and Ischemia
In Association with the European Association of PCI

9.00 am – 10.30 am Athena Auditorium

Moderators:
Michael Jerosch–Herold, PhD, Brigham and Women’s Hospital
Jürg Schwitter, MD, University Hospital Lausanne

9.00 am
What does an interventionalist expect from an imaging test?
Carlo Di Mario, MD, PhD, Royal Brompton Hospital

9.12 am
In which CAD patients is CMR today the test of choice?
Albert C. van Rossum, MD, PhD, VU University Medical Center

Learning Objectives
- Understand the CMR perfusion techniques involved in assessing the diagnosis of ischemia in coronary artery disease (CAD)
- Understand the strengths and weaknesses of stress perfusion CMR in diagnosing CAD compared to nuclear techniques
- Know in which CAD patients CMR is the test of choice

9.24 am
CMR for assessment of functional significance of coronary stenosis
Stuart Watkins, MD, Sunnybrook Health Sciences Centre

Learning Objectives
- Appreciate the value of CMR myocardial perfusion imaging compared with other non-invasive imaging modalities for the diagnosis of significant coronary artery disease
- Appreciate the limitations of quantitative coronary angiography as a gold standard test in assessing a non-invasive test
- Understand the value of measuring fractional flow reserve and how this is performed

9.36 am
Intravascular OCT and FFR assessment of coronary lesions: how to conciliate anatomic and physiologic information?
Hiram Grando Bezerra, MD, PhD, Case Western Reserve University

Learning Objectives
- Understand the difference between anatomic information assessment and functional assessment
- Correlate invasive physiology with intravascular OCT
- Understand the potential additive value of physiological and anatomic assessment in coronary artery disease

9.48 am
Unresolved technical issues and potential solutions in perfusion CMR
Edward DiBella, PhD, University of Utah

Learning Objectives
- Better appreciate and reduce dark rim artifacts arising with myocardial perfusion imaging studies
- Understand the effect of poor ECG gating in myocardial perfusion imaging studies on qualitative and quantitative analyses
- Successfully perform and interpret myocardial perfusion scans at rest and stress with CMR

10.00 am
Developments in myocardial perfusion imaging by CT and echocardiography: how do they compare with CMR?
Joao A. C. Lima, MD, Johns Hopkins University

Learning Objectives
- Discuss differences in perfusion imaging by ultrasound, CT and MR
- Familiarize attendees with the concept of coronary flow reserve in patients with severe CAD
- Discuss the potential impact of perfusion on CAD patient selection for intervention

10.12 am
Panel discussion

* At the conclusion of this presentation, the attendee should be better able to
Oral Abstract Session 8:
EP and Interventional Applications

9.00 am – 10.30 am Room Thalie/Erato

Moderators:
David Bluemke, MD, PhD, National Institutes of Health
Marcus Y. Chen, MD, National Institutes of Health

9.05 am O50
Paced segment characteristics predict clinical response to cardiac resynchronization therapy: results from the multimodality imaging assessment of pacing intervention in heart failure (mAPIt-HF) study
Jorge A. Wong, MD, University of Western Ontario

9.17 am O51
Multimodality imaging in transcatheter aortic valve implantation (TAVI): comparison between cardiovascular magnetic resonance, cardiac computed tomography and echocardiography
Andrew Jabbour, BSc(Med), MBBS (Hons), PhD, Royal Brompton Hospital and Imperial College

9.29 am O52
Improvement of LV functional performance in the chronic total coronary occlusion during the late stage is associated with the extensive collateral development
Yuesong Yang, MD, PhD, Sunnybrook Health Sciences Centre

9.41 am O53
Quantitative blush evaluator (QuBe) accurately quantifies microvascular dysfunction in patients with ST-Elevation Myocardial Infarction; comparison with cardiovascular magnetic resonance
Christian Hamilton-Craig, MBBS FRACP, University of Queensland

9.53 am O54
Real-time MR-guided transarterial aortic valve implantation (TAVI): in vivo evaluation in swine
Harald H. Quick, PhD, University of Erlangen

10.05 am O55
MR-guided cardiac interventions using MR-compatible devices: first-in-man clinical trial
Aphrodite Tzifa, FRCPCH, King’s College London

10.17 am O56
3D visualization of myocardial substrate using delayed enhancement MRI for pre-planning and guidance of ablation procedures of ventricular tachycardia
Jose L. Rubio-Guivenau, MSc, Universidad Politécnica de Madrid & Ciber BBN

Case Review Session: Congenital 1

9.00 am – 10.30 am Room Clio

CMR cases: common congenital and adult congenital indications
Moderators:
Willem A. Helbing, MD, Erasmus MC-Sophia
Tiffanie R. Johnson, MD, FAAP, FACC, Riley Hospital for Children
Lars Grosse-Wortmann, MD, The Hospital for Sick Children

Learning Objectives*
> Understand CMR techniques used in imaging common congenital pathologies
> Learn about some of the pitfalls in congenital CMR
> Optimize imaging protocols in congenital CMR and post-operative follow up

Presenters:
Michael Silberbach, MD, Oregon Health & Science University
Margaret M. Samyn, MD, Children’s Hospital of Wisconsin
Karen Ordovas, MD, University of California San Francisco
Taylor Chung, MD, Children’s Hospital Oakland
Ann Marie Valente, MD, Children’s Hospital Boston
Shin-Joo Yoo, MD, FRCPC, Hospital for Sick Children, University of Toronto

10.15 am
Panel discussion
Oral Abstract Session 9:

Early Career Award – Basic Translational

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 am</td>
<td>Longitudinal trends of remodeling mechanisms after acute myocardial infarction based on severity of ischemic insult: A quantitative MRI study</td>
<td>Nilesh R. Ghugre, PhD</td>
<td>Sunnybrook Health Sciences Centre</td>
</tr>
<tr>
<td>9.17 am</td>
<td>Monitoring of gadolinium uptake within the vessel wall during magnetic resonance (MR) guided angioplasty of the peripheral arteries with a paclitaxel/gadolinium coated balloon: an experimental study at 3T</td>
<td>Mirja Neizel, MD</td>
<td>University Hospital Düsseldorf</td>
</tr>
<tr>
<td>9.29 am</td>
<td>Dystrophinopathies are characterised by impaired cardiac metabolism, contractile dysfunction and fibrosis in patients with and without coxsackie B3 exposure</td>
<td>Joseph Suttie, MBBS FRACP</td>
<td>University of Oxford</td>
</tr>
<tr>
<td>9.41 am</td>
<td>Equilibrium contrast CMR for the detection of amyloidosis in mice</td>
<td>Adrienne E. Campbell, PhD candidate</td>
<td>University College London</td>
</tr>
<tr>
<td>9.53 am</td>
<td>Real-time MRI guided percutaneous transthoracic left ventricular access and closure</td>
<td>Israel M. Barbash, MD</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>10.05 am</td>
<td>Quantitative T1-maps delineate myocardium at risk as accurately as T2-maps - experimental validation with microspheres</td>
<td>Martin Ugander, MD, PhD</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>10.17 am</td>
<td>Non-contrast quantitative T1-mapping indicates that salvaged myocardium develops edema during coronary occlusion, whereas infarction exhibits evidence of additional reperfusion injury</td>
<td>Martin Ugander, MD, PhD</td>
<td>National Institutes of Health</td>
</tr>
</tbody>
</table>

Panel Discussion
Oral Abstract Session 10: CMR of Ischemia and Viability

Moderators:
Raymond J. Kim, MD, Duke University
Holger Thiele, MD, University of Leipzig – Heart Center

<table>
<thead>
<tr>
<th>Time</th>
<th>Abstract Number</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.05 am</td>
<td>O64</td>
<td>The role of dobutamine stress magnetic resonance in the clinical management of patients with coronary artery disease</td>
<td>Rolf Gebker, MD, German Heart Institute</td>
</tr>
<tr>
<td>11.17 am</td>
<td>O65</td>
<td>Serial quantification of myocardial infarction tissue heterogeneity during infarct healing by cardiac MRI provides strong characterization of left ventricular remodeling (the NHLBI PROSPECT-CMR Study)</td>
<td>Bobby Heydari, MD, Brigham and Women’s Hospital</td>
</tr>
<tr>
<td>11.29 am</td>
<td>O66</td>
<td>Impaired coronary vasodilation with Regadenoson in patients with angiographically normal coronaries when compared to normal volunteers – insights from quantitative MRI perfusion</td>
<td>Sujethra Vasu, MD, National Institutes of Health</td>
</tr>
<tr>
<td>11.41 am</td>
<td>O67</td>
<td>The relationship of the transmural extent of T2-edema compared with the transmural extent of infarction: implications for the assessment of the area-at-risk</td>
<td>Han W. Kim, MD, Duke University</td>
</tr>
<tr>
<td>11.53 am</td>
<td>O68</td>
<td>Utility of CMR for differentiating acute from chronic myocardial infarction - revisiting T2-weighted imaging with inclusion of intermediate aged infarcts</td>
<td>Martijn Smulders, MD, Maastricht University Medical Center</td>
</tr>
<tr>
<td>12.05 am</td>
<td>O69</td>
<td>Preservation of the relation between infarct characteristics and left ventricular remodeling following successful early revascularization for myocardial infarction: an observational study with contrast-enhanced cardiovascular MRI</td>
<td>Marlon A. Olimulder, MD, MST Enschede</td>
</tr>
<tr>
<td>12.17 am</td>
<td>O70</td>
<td>The yield of stress perfusion CMR in asymptomatic diabetics</td>
<td>Darach O h-lIci, MB BCh, Institut Cardiovasculaire Paris Sud, Hopital Prive Jacques Cartier</td>
</tr>
</tbody>
</table>

Case Review Session: Cases from London CMR

Moderators:
James Moon, MD, The Heart Hospital London
Mark Westwood, MRCP, MD, The London Chest Hospital

Presenters:
Thomas R. Burchell, MBBS, The London Chest Hospital
Neha Sekhri, MRCP, PhD, London Chest Hospital
John Paul Carpenter, MD, Royal Brompton Hospital
Andrew Flett, BSc, (Hons) MBBS MRCP, The Heart Hospital, University College London Hospital NHS Trust
Anna Herrey, MD, PhD, MRCP, The Heart Hospital Imaging Centre
Geraint Morton, MA, MBBS, King’s College London

Lecture Session: Molecular Imaging

Moderators:
Gregory Lanza, MD, PhD, Washington University School of Medicine
Victor A. Ferrari, MD, University of Pennsylvania

Learning Objectives
- Understand the specific steps in the development of molecular imaging agents
- Better comprehend the integration of clinical need and development strategies for molecular imaging agents
- Appreciate the potential conflicting factors related to optimization of imaging characteristics and ultimate clinical utility for molecular agents

Robust quantitation in MR molecular imaging

Shelton Caruthers, PhD, Washington University of Medicine

Learning Objectives
- Understand the importance of quantitative vs. qualitative MR molecular imaging
- Have an appreciation for some of the sources of variability in making accurate quantitative measurements
- Have an appreciation for some methods and techniques to overcome or correct for errors in quantitation
The role of magnetic resonance in image-guided drug delivery
Gregory Lanza, MD, PhD, Washington University School of Medicine

Learning Objectives*
> Understand the opportunities and challenges for clinical translation of T1w MR molecular imaging agents
> Understand the potential for incorporating drugs with molecular imaging agents
> Understand the importance of quantification for clinical use of molecular imaging in practice

Translational challenges and opportunities of T2* agents
Robin Choudhury, MD, John Radcliffe Hospital

Learning Objectives*
> Understand translational challenges
> Understand translational opportunities of T2 agents
> Understand molecular imaging using T2 agents

Stem cell approaches: tracking and qualification
Dara Kraitchman, VMD, PhD, Johns Hopkins University

Learning Objectives*
> Delineate the methods to label stem cells for tracking using CMR
> Describe the methods most likely to be translated to the clinical for tracking stem cells and monitoring engraftment
> Understand the hurdles to adoption of stem cell labeling methods and CMR’s role in the evaluation of stem cell

Panel discussion

12.30 pm – 1.30 pm Lunch (on own)
Exhibits/Posters (Authors present)

Long-term follow-up after viral myocarditis established by endomyocardial biopsy: predictors of mortality
Stefan Grün, MD, Robert-Bosch-Medical Center

Acute pulmonary vein isolation lesions consist of interstitial oedema and tissue necrosis: possible mechanism of pulmonary vein reconnection
Aruna Arujuna, MRCP, King’s College London

Timing of cardiovascular magnetic resonance imaging after acute myocardial infarction: effect on estimates of infarct characteristics and prediction of late ventricular remodeling
Adam N. Mather, MBBS, University of Leeds

Myocardial T1-mapping for early detection of left ventricular myocardial fibrosis in systemic sclerosis
Franck Thuny, MD, Hopital Louis Pradel-Laboratoire Creatis

Comparing analysis methods for quantification of myocardial oedema in patients following reperfused ST-elevation MI
Tom Burchell, MBBS, London Chest Hospital

Animal models of myocardial infarction for translational research
Jürgen E. Schneider, PhD, Oxford University

Learning Objectives*
> Explain benefits & limitations of animal models of myocardial infarction for translation research
> List CMR techniques to characterize and quantify myocardial injury in these models
> Give examples for the use of CMR in animal models of myocardial injury

Functional and clinical impact of microvascular obstruction in acute MI
Katherine Wu, MD, Johns Hopkins Hospital

Learning Objectives*
> Describe the pathophysiology of microvascular obstruction
> Describe and compare the CMR-LGE methods of detecting and quantifying microvascular obstruction
> Describe the CMR-LGE data supporting the effects of microvascular obstruction on post-MI LV remodeling and clinical prognosis

* At the conclusion of this presentation, the attendee should be better able to
2.00 pm
Microinfarct imaging with high resolution LGE: A new prognostic marker?
Jörg Barkhausen, MD, University Hospital Schleswig-Holstein
Learning Objectives*
> Perform MR examination in patients with suspected microinfarcts
> Distinguish microinfarcts from artifacts
> To judge the clinical impact of microinfarcts

2.15 pm
When CMR assessment improves patient management over conventional imaging in AMI patients
Raymond Kwong, MD, MPH, Brigham and Women’s Hospital
Learning Objectives*
> Name the pulse sequences and the corresponding myocardial features that CMR can use in assessment of acute myocardial infection
> Determine the reasons why the multifaceted approach by CMR provides incremental diagnostic ability over conventional imaging techniques
> Clinical situations that CMR can provide information that will alter patient management in patients presenting with acute MI

2.30 pm
Measuring treatment effects in clinical trials – how accurate is CMR?
Pierre Croisille, MD, PhD, Hôpital Cardiologique L. Pradel
Learning Objectives*
> Understand the new concepts driving current clinical trials in AMI patients
> Identify CMR imaging variables that can be used as surrogate endpoints in clinical trials
> Identify CMR strength and perspectives in clinical trials

2.45 pm
Panel discussion

C
Oral Abstract Session 11:
Novel Concepts or Techniques
1.30 pm – 3.00 pm Room Thalie/Erato
Moderators:
Andrew Powell, MD, Children’s Hospital Boston
Anne Marie Valente, MD, Children’s Hospital Boston
1.35 pm 071
Accuracy of aortic pulse wave velocity assessment with velocity-encoded MRI: validation in patients with Marfan syndrome
Eleanore S. Kröner, MD, Leiden University Medical Center
1.47 pm 072
The cardiac atlas project: rationale, design and preliminary results
Pau Medrano-Gracia, MSc, MEng, The University of Auckland
1.59 pm 073
Evaluation of right ventriculoarterial coupling in pulmonary hypertension: a magnetic resonance study
Javier Sanz, MD, Mount Sinai School of Medicine
2.11 pm 074
Time resolved measure of coronary sinus flow following regadenoson administration
O. Julian Booker, MD, National Heart, Lung, and Blood Institute
2.23 pm 075
Validation of echocardiographic indices of right ventricular systolic function with cardiac magnetic resonance: a comparative study
Suchi K. Grover, MBBS, Flinders Medical Centre
2.35 pm 076
Myocardial fibrosis as an early cardiac marker of disease in patients with lamin A/C mutations
Andrea Barison, MD, Scuola Superiore Sant’Anna and Fondazione G. Monasterio CNR - Regione Toscana
2.47 pm 077
The role of late gadolinium enhancement of the right ventricular insertion point predicts survival in patients with pulmonary hypertension
Benjamin H. Freed, MD, University of Chicago Medical Center
Case Review Session: Heart Failure
Cases from the NIH and Cleveland Clinic
1.30 pm – 3.00 pm Room Clio

Cases of heart failure and from the NIH and Cleveland Clinic
Moderator:
Andrew E. Arai, MD, NHLBI – National Institutes of Health
Learning Objectives*
> Discuss CMR applications suitable for evaluating patients with heart failure
> Understand factors that lead to reduced image quality in patients with heart failure
> Learn methods for adjusting CMR image acquisition to customize to the special needs of patients with heart failure

Presenters:
Sujata Shanbhag, MD, NHLBI – National Institutes of Health
Steve Leung, MD, NHLBI – National Institutes of Health
Joel Wilson, MD, NHLBI – National Institutes of Health
Milind Desai, MD, Cleveland Clinic

Oral Abstract Session 12:
Physiology and Metabolism Including Spectroscopy
1.30 pm – 3.00 pm Hermes Auditorium

Moderators:
Haakan Arheden, MD, PhD, Lund University
Robert Weiss, MD, The Johns Hopkins University School of Medicine

1.35 pm
Local-look navigator gated and cardiac triggered echo-planar spectroscopic imaging of the heart
Kilian Weiss, MSc, University and ETH Zurich

1.47 pm
Assessment of in vivo metabolism in failing hearts using hyperpolarised 13C magnetic resonance
Marie A. Schroeder, D.Phil., Sunnybrook Research Institute

2.23 pm
Cardiac steatosis is associated with excess body weight in otherwise healthy adults
Rajarshi Banerjee, BM BCh MRCP DipPH, University of Oxford

2.35 pm
Visualization and quantification of 4D blood flow distribution and energetics in the right ventricle
Alexandru G. Fredriksson, Med student, Linköping University

2.47 pm
Diastolic preparation for left ventricular ejection - a marker of inefficiency of the failing heart
Jonatan Eriksson, MSc, Center Linköping University

3.00 pm – 3.30 pm Refreshment Break
Exhibits/Poster Viewing
(Authors not present)

Lecture Session: CMR-Guided Intervention
3.30 pm – 5.00 pm Athena Auditorium

Moderators:
Robert J. Lederman, MD, National Institutes of Health
Tobias Schaeffter, PhD, King’s College London

3.30 pm
iMRI for conducting intervention and predicting their outcome
Titus Kühne, PhD, German Heart Institute Berlin
Learning Objectives*
> Understand clinical indication of iMRI
> Conduct iMRI at his institute
> Judge the reliability using MRI data for predicting the outcome of intervention

3.42 pm
GPU-based reconstruction for iCMR
Michael S. Hansen, PhD, National Institutes of Health
Learning Objectives*
> Appreciate that there is a difference between real-time acquisition and real-time reconstruction
> Understand the time constraints for real-time image reconstruction for interventional imaging
> Identify core advantages of GPU reconstruction in iCMR and give examples of useful applications
3.54 pm
Computational fluid dynamics & procedure planning
Ajit P. Yoganathan, PhD, Georgia Institute of Technology

Learning Objectives*
> Application of MRI imaging processing to reconstructing complex Fontan anatomies
> Application of computational fluid dynamics to the Fontan circulation
> Application of surgical planning in pediatric cardiology

4.06 pm
Clinical iCMR procedures: A new milestone
Reza Razavi, MD, King’s College London

Learning Objectives*
> Role of iCMR in management of cardiovascular disease
> State of the art in iCMR
> Future clinical application of iCMR

4.18 pm
Approaches to attenuate heating during iCMR
Christina E. Saikus, PhD, National Institutes of Health

Learning Objectives*
> Identify safety considerations for devices in the MR environment
> Understand current approaches to attenuate potential heating during iCMR
> Recognize benefits and drawbacks of current approaches and possibilities for new techniques

4.30 pm
Transmit arrays to attenuate heating during iCMR
Greig C. Scott, PhD, Stanford University

Learning Objectives*
> Understand RF heart risks in cardiac MRI with interventional devices and implants
> Understand how transmit arrays can minimize and control RF coupling
> How guidewire and catheter devices can become micro-transmit array elements

4.45 pm
Panel discussion

Oral Abstract Session 13: Prognosticating CAD

3.30 pm – 5.00 pm Room Thalie/Erato

Moderators:
Michael McConnell, MD, MSEE, Stanford School of Medicine
Sanjay Prasad, MD, Royal Brompton Hospital

3.35 pm O85
Prognostic value and determinants of a hypointense core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation myocardial infarction
Holger Thiele, MD, University of Leipzig - Heart Center

3.47 pm O86
Gender differences in myocardial salvage and clinical outcome in patients with acute reperfused ST-elevation myocardial infarction
Ingo Eitel, MD, Heart Center Leipzig

3.59 pm O87
Stress myocardial perfusion imaging by cardiac magnetic resonance provides strong prognostic value to cardiac events in patients with diabetes
Otavio R. Coelho-Filho, MD, Brigham and Women’s Hospital

4.11 pm O88
Scar assessment by cardiac MRI can predict outcome in high-risk patients undergoing coronary artery bypass graft (CABG)
Abdalla Elagha, MD, National Institutes of Health

4.23 pm O89
Papillary muscle infarction and cardiovascular outcomes
Geetha P. Bhumireddy, MD, New York Methodist Hospital

4.35 pm O90
Bernhard L. Gerber, MD, PhD, FESC, Cliniques Universitaires St.Luc

4.47 pm O91
Implantable cardioverter defibrillator implantation and degree of left ventricular scarring predict survival in patients with severe ischemic cardiomyopathy
Deborah H. Kwon, MD, Cleveland Clinic Foundation
Case Review Session: CMR in Cardiomyopathy

3.30 pm – 5.00 pm
Room Clio

Cases from the University of Pennsylvania: Approach to cardiomyopathies
Moderator: Victor A. Ferrari, MD, University of Pennsylvania
Learning Objectives:*
> Understand the specific tools to optimize cardiomyopathy studies using CMR techniques
> Recognize the particular patterns of late gadolinium enhancement in various cardiomyopathies
> Learn how to implement various protocols for evaluating patients with cardiomyopathies

Presenters:
Victor A. Ferrari, MD, University of Pennsylvania
Yuchi Han, MD, University of Pennsylvania
Scott Akers, MD, PhD, University of Pennsylvania
Harold Litt, MD, PhD, University of Pennsylvania

Oral Abstract Session 14: Basic Translational: Myocardial, Perfusion, and Regional Strain

3.30 pm – 5.00 pm
Hermes Auditorium

Moderators:
David Firmin, PhD, Royal Brompton Hospital
Reza Nezafat, PhD, Harvard Medical School

3.35 pm
Non-invasive cardiac magnetic resonance and electrical myocardial imaging assessment of CRT in patients with heart failure and left bundle branch block
Fady Dawoud, PhD, Johns Hopkins University

3.47 pm
Impaired myocardial perfusion on CMR is associated with increased numbers of classical monocytes in STEMI patients treated by primary PCI
Lourens F.H.J. Robbers, MSc, MD, VU University Medical Center

3.59 pm
Arterial spin labeled MRI detects clinically relevant increases in myocardial blood flow with vasodilation
Zungho Zun, MS, University of Southern California

4.11 pm
Myocardial systolic strain assessed by cardiovascular magnetic resonance relates to subclinical atherosclerosis in healthy young adults
Adam J. Lewandowski, BSc, University of Oxford

4.23 pm
Is the process of stabilization of carotid plaque more dynamic than expected? A high-resolution 3D-CMR statin-naive human study
Robert W. Biederman, MD, FACC, FAHA, Allegheny General Hospital

4.35 pm
Correlates of aortic pulse wave velocity measured by cardiac MRI
Visali Kodali, MD, St. Francis Hospital

4.47 pm
Combination of compressed sensing and parallel imaging with respiratory motion correction for highly-accelerated cardiac perfusion MRI
Ricardo Otazo, PhD, New York University School of Medicine

CONCURRENT SESSIONS
5.00 pm – 6.30 pm

Lecture Session: Cost-Effectiveness of CMR
5.00 pm – 6.30 pm
Athena Auditorium

Moderators:
Sven Plein, MD, PhD, University of Leeds
Raymond Kwong, MD, MPH, Brigham and Women’s Hospital

5.00 pm
Cost-effectiveness with a focus on CMR
Rory Hachamovitch, MD, MSc, Cleveland Clinic
Learning Objectives:*
> What are cost-effectiveness analyses and why are they important
> Understand the challenges we face in assessing the cost-effectiveness of cardiovascular imaging modalities
> What are the different types of cost-effectiveness analyses and their advantages and disadvantages

5.15 pm
Cost-effectiveness analyses in the Euro CMR registry
Jürg Schwitter, MD, University Hospital Lausanne
Learning Objectives:*
> Understand the impact of non-invasive imaging in the work-up of CAD with respect to costs
> Understand the influence of disease prevalence and test performance to detect CAD non-invasively
> Understand the complementary nature of prospective controlled clinical trials and registries to assess the impact of novel technologies on health care costs

* At the conclusion of this presentation, the attendee should be better able to...
5.30 pm
Cardiac magnetic resonance in today’s economic climate; a cost-effective analysis
Vinayak A. Hegde, MD, Akron General Medical Center
Learning Objectives*
> Understand assessment of cost effectiveness
> Apply appropriate cost effectiveness analyses to studies with different research designs
> Provide medically cost effective patient care

5.45 pm
Cost analysis of adenosine-stress CMR – comparison with other modalities
Günter Pilz, MD, University of Munich
Learning Objectives*
> Judge the diagnostic accuracy and prognostic value of a normal stress CMR exam
> Estimate whether and to what extent CMR reduces the subsequent utilization of cardiac catheterization in patients suspected of having CAD
> Understand whether and in which subgroups the application of CMR in patients suspected of having CAD reduces cost by averting referrals to cardiac catheterization

6.00 pm
What are the basic steps in assessing cost-effectiveness of CMR?
Raymond Kwong, MD, MPH, Brigham and Women’s Hospital
Learning Objectives*
> Name the potential topics relevant for cost-effectiveness in CMR and why this issue is increasingly important
> Recognize the components required to perform the basic steps involved in a decision analysis model assessing the cost-effectiveness of novel imaging methods including CMR
> Name a number of resources to start data collection and planning of performing cost-effectiveness assessment of CMR

6.15 pm
Panel discussion

5.00 pm – 6.30 pm
Room Thalie/Erato

Moderators:
Bernhard Gerber, MD, PhD, FESC, Cliniques Universitaires St. Luc
Steffen Petersen, MD, PhD, FESC, Barts and The London NIHR

5.05 pm
CMR quantification of aortic regurgitation in asymptomatic patients with significant aortic regurgitation: prediction of clinical outcome
Saul G. Myerson, MB ChB, MD, FESC, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR)

5.17 pm
Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation
Igor Klem, MD, Duke University Medical Center

5.29 pm
Clinical utility of cardiac magnetic resonance T2 mapping for acute myocardial edema
Asad A. Usman, MD, MPH, Northwestern University

5.41 pm
Can cardiac MRI be the ‘crystal ball’ for risk stratification in dilated cardiomyopathy? The impact of an LV mid-myocardial stripe on LVAD and transplantation risk
Jose Venero, MD, Allegheny General Hospital

5.53 pm
Delayed enhancement cardiac magnetic resonance imaging predicts future arrhythmic events in primary prevention ICD candidates irrespective of ischemic or non-ischemic etiology
James A. White, MD, London Health Sciences Centre

6.05 pm
Right ventricular dysfunction predicts clinical outcomes following cardiac resynchronization
Francisco Alpendurada, MRCP, Royal Brompton Hospital

6.17 pm
The utility of delayed-enhancement and T2-weighted cardiovascular MRI for predicting clinical outcomes in patients at high risk for cardiac sarcoidosis
Yongkasem Vorasettakarnkij, MD, Massachusetts General Hospital
Case Review Session: Congenital 2
Interactive Case Discussion
5.00 pm – 6.30 pm
Room Clio

Interactive case discussions in congenital and adult congenital heart disease
Moderators:
Sonya Babu-Narayan, MD, BS, BSc, MRCP, Royal Brompton Hospital
Tiffanie R. Johnson, MD, FAAP, FACC, Riley Hospital for Children
Michael Taylor, MD, PhD, Cincinnati Children’s Hospital Medical Center

Learning Objectives*
> Understand the use of CMR and other imaging modalities for the diagnosis of congenital and adult congenital heart disease
> Understand physiologic and/or anatomic principles of particular forms of congenital and adult congenital heart disease
> Understand how CMR influences patient management

Presenters:
Adam Dorfman, MD, University of Michigan Health Systems
Stephen Cook, MD, Nationwide Children’s Hospital
Ashwin Prakash, MD, Children’s Hospital Boston
Ruchira Garg, MD, FACC, Miami Children’s Hospital
Kevin K. Whitehead, MD, PhD, Children’s Hospital of Philadelphia

Oral Abstract Session 16: Basic Translational Myocardial Scar, Fibrosis, and Edema
5.00 pm – 6.30 pm
Hermes Auditorium

Moderators:
Matthias Friedrich, MD, FESC, FACC, Stephenson CMR Centre at the Libin Cardiovascular Institute of Alberta
Michael Lustig, PhD, MSc, UC Berkeley

5.05 pm
Fuzzy-logic, manual and semi-automated 2SD-based approaches for quantification of myocardial necrosis from late contrast enhancement magnetic resonance images: comparison with biochemical assessment of infarct size and left ventricular volumes and function early after myocardial infarction
Nicolas Baron, Graduate, Centre Hospitalier de Versailles

5.17 pm
Rapid cardiac T1 mapping within two heartbeats
Elodie Breton, PhD, NYU Langone Medical Center

5.29 pm
The quantification and role of diffuse myocardial fibrosis in familial dilated cardiomyopathy - an equilibrium contrast CMR study
Daniel M. Sado, MRCP, The Heart Hospital

5.41 pm
Identification of myocardial extracellular matrix expansion by cardiac MRI in hypertensive patients
Francois-Pierre Mongeon, MD, Brigham and Women’s Hospital

5.53 pm
Early detection of myocardial fibrosis in type II diabetic patients using MR T1-mapping
Helene Thibault, MD, PhD, Louis Pradel Hospital and Inserm U886

6.05 pm
Development of myocardial edema following acute bouts of intense physical exertion in healthy active men: a cardiovascular magnetic resonance (CMR) study
Myra S. Cocker, PhD Candidate, Stephenson Cardiovascular Magnetic Resonance Centre

6.17 pm
Myocardium area at risk measured with delayed enhancement after scar remodeling compared with T2-weighted cardiac magnetic resonance imaging
Jacob T. Lønborg, MD, University Hospital of Copenhagen

Award Reception
6.45 pm – 8.00 pm
Agora 2

* At the conclusion of this presentation, the attendee should be better able to
SCMR/Euro CMR SCIENTIFIC SESSIONS
FEBRUARY 6, 2011

CONCURRENT SESSIONS 7.00 am – 8.00 am

B C G

Cardiology Concepts for Non-Cardiologists 3: Risk versus Benefit in Cardiovascular Medicine
7.00 am – 8.00 am Athena Auditorium

7.00 am
Cost and benefit in diagnostic medicine
Rory Hachamovitch, MD, MSc, Cleveland Clinic
Learning Objectives*
> Understand the principles underlying the analysis of cost and benefit in diagnostic medicine
> Understand the importance of cost-effectiveness and cost-benefit analyses in the current healthcare environment
> Understand and interpret the cost and benefit literature

7.30 am
Radiation burden
Rosa Sicari, MD, PhD, FESC, CNR Institute of Clinical Physiology
Learning Objectives*
> Know radiological doses and long-term risks of common cardiological examinations
> Decide appropriateness of medical imaging based on risk-benefit assessment
> Make a comparative assessment of different imaging techniques

C G

Physics for Physicians 3: Using Physics to Optimize Cardiovascular MR Images
7.00 am – 8.00 am Hermes Auditorium

7.00 am
Optimizing pulses sequences for myocardial perfusion and LGE
Michael Jerosch-Herold, PhD, Brigham and Women’s Hospital
Learning Objectives*
> Understand how the pulse sequence for myocardial perfusion imaging and LGE work, and what sequence variants are most commonly used
> Optimize the parameter settings of the sequences, and adapt them to the CMR exam requirements, using an understanding of the typical trade-offs involved in balancing the CMR protocol with the study requirements
> Understand the most common problems and artifacts that occur with myocardial perfusion and LGE imaging, and how to avoid them

7.30 am
Optimizing pulse sequences for challenging patients – what to compromise?
Reza Nezafat, PhD, Harvard Medical School
Learning Objectives*
> How to optimize imaging parameters for cardiac MRI
> How to deal with afib
> Understand various methods to reduce imaging artifacts for CMR

C G

Case Review Session: Mixed Cases from Latin America
7.00 am – 8.00 am Room Risso

Cases from Latin America
Moderator:
Carlos E. Rochitte, MD, PhD, Instituto do Coração
Learning Objectives*
> Recognize diseases seen more frequently in South America
> Understand the role of CMR in diagnosing cardiac diseases common in South America
> Understand role of CMR versus other imaging modalities

Presenters:
Carlos E. Rochitte, MD, PhD, Instituto do Coração
Juliano de Lara Fernandes, MD, PhD, University of Campinas (UNICAMP)

CONCURRENT SESSIONS 8.00 am – 9.30 am

B C G

Lecture Session: Best Clinical Practice
8.00 am – 9.30 am Athena Auditorium

Moderators:
Charles Higgins, MD, University of California, San Francisco
Christopher M. Kramer, MD, University of Virginia

8.00 am
SCMR standardized protocols and variability of CMR measurements
Christopher M. Kramer, MD, University of Virginia
Learning Objectives*
> Understand the use of SCMR standardized protocols
> Understand for which applications CMR measures are not standardized
> Plan what studies are needed to standardize protocols and measurements

8.12 am
SCMR standardized reporting guidelines
Oliver Bruder, MD, Elisabeth Krankenhaus Essen
Learning Objectives*
> Understand and apply the SCMR standardized reporting guidelines

8.24 am
Developments in CMR accreditation and reimbursement: radiology perspective
Jens Bremerich, MD, University Hospital Basel
Learning Objectives*
> Oversee the legal situation for authorization of radiologists for cardiac imaging in Europe
> Understand accreditation procedure for cardiac imaging for radiologists in Europe
> See the heterogeneity of reimbursement of cardiac CT and MR in Europe

Color Legend for Tracks: B = Basic Science C = Congenital G = General

www.scmreurocmr2011.org 39
8.36 am
Developments in CMR accreditation and practice: cardiology perspective
Gerald M. Pohost, MD, University of Southern California
Learning Objectives*
> Know how to become credentialed in CMR in the US
> Know what bodies are available for CMR
> Know the SCMR recommendations for levels of practice and credentialing

8.48 am
Challenges and opportunities for CMR in China
Jianming Cai, MD, PhD, Chinese PLA General Hospital
Learning Objectives*
> Know the achievements for cardiovascular MR in China
> Understand the challenges for cardiovascular MR in China
> Know the opportunities for cardiovascular MR in China

9.00 am
News on safety: CMR of implantable devices and NSF
Scott D. Flamm, MD, Cleveland Clinic
Learning Objectives*
> Recognize the risks and potential benefits of performing CMR in patients with pacemakers and ICDs
> Understand the identification of and risks for development of nephrogenic systemic fibrosis
> Describe the current screening procedures and strategies for avoiding NSF

8.15 am
CMR of myocardial structure, function, and perfusion in mouse and rat models
Frank Kober, PhD, Université de la Méditerranée
Learning Objectives*
> Overview techniques and applications of multimodal CMR in animal models
> Understand basics of myocardial perfusion in animal models and how to measure it
> Understand the fundamental differences between perfusion MR in rodents and in humans
> Choose an appropriate anesthetic used for CMR in rodents

8.30 am
31P MRS in animal models of ischemia and translation to human
Robert Weiss, MD, Johns Hopkins Hospital
Learning Objectives*
> 31P MRS methods used in animal studies
> Common findings and metabolic results from 31P MRS studies in ischemic and failing animal hearts
> Methods for acquiring heart data from 31P MRS in people

8.45 am
Cellular and molecular CMR in animal models
Gustav Strijkers, MD, Eindhoven University of Technology
Learning Objectives*
> Understand the differences between human and small animal cardiovascular MRI imaging, and understand some of the special MRI sequences for imaging the cardiovascular system of mice
> Define the criteria on the basis of which to choose the best contrast agent for a specific cellular or molecular cardiovascular imaging application
> Understand the translational limitations of the new molecular MR imaging agents

9.00 am
Infarct core, peri-infarct zone, and area-at-risk imaging in animal models
Otavio R. Coelho-Filho, MD, Brigham and Women’s Hospital
Learning Objectives*
> Understand the potential applications, limitations of a variety of experimental models of myocardial infarction
> Understand why CMR is suitable to assess cardiovascular morphology and physiology in animal’s models of myocardial infarction
> Identify the advantage and disadvantage of different criteria for infarct tissue heterogeneity assessment
> Understand the potential role of tissue heterogeneity in the development of arrhythmias after MI and cardiac death

9.15 am
Panel discussion

9.30 am – 10.00 am Refreshment Break
Exhibits/Poster Viewing (Authors not present)

* At the conclusion of this presentation, the attendee should be better able to
Lecture Session: Emerging Imaging Modalities in Cardiology

10.00 am – 11.30 am Athena Auditorium

Moderators:
Jörg Barkhausen, MD, University Hospital Schleswig-Holstein
Gregory Lanza, MD, PhD, Washington University School of Medicine

10.00 am
MR-elastography
Ralph Sinkus, PhD, ESPCI

Learning Objectives*
> Understand the basic concept of elastography, in particular the MR approach including the MR-sequences and its synchronization with the mechanical excitation
> Understand the difference between tissues' mechanical properties regarding compression and shear and its implication for elastography
> Understand the impact of MRE for staging liver fibrosis, characterizing liver tumors, assessing de-myelination effects in white matter

10.15 am
Ultra-high-field cardiac MR; 7T and beyond
Saskia van Elderen, MD, Leiden University Medical Center

Learning Objectives*
> Define the principal advantages and challenges of high field MR for cardiac imaging
> Describe the current state of knowledge in the field of in vivo human 7 Tesla cardiac MR
> Explore the most promising cardiac MR applications at 7 Tesla for patient care

10.30 am
MR-PET and PET-CT
Zahi Fayad, PhD, Mount Sinai School of Medicine

Learning Objectives*
> To demonstrate the methods of plaque imaging with MRI, PET, CT
> To understand the advantages and limitations of plaque molecular imaging using MRI, PET, CT
> To discuss the preclinical and clinical relevance of plaque molecular imaging by MRI, PET, CT

10.45 am
Magnetic particle imaging
Jörn Borgert, PhD, Philips Technologie GmbH

Learning Objectives*
> Understand the technical potential and the limitation of the presented new technology named magnetic particle imaging
> Understand the potential application of magnetic particle imaging in cardio-vascular applications
> Understand the link between tracer and instrumentation and their joint impact on the performance of the method

11.00 am
Simultaneous 1H/19F imaging
Samuel A. Wickline, MD, Washington University School of Medicine

Learning Objectives*
> Understand the role that fluorine magnetic resonance imaging could play in quantitative MRI for diagnosis of arteriosclerosis
> Understand the potential for dual proton and fluorine magnetic resonance imaging methods in cardiovascular molecular imaging
> Understand the principles and uses of nano particle-based fluorine and proton agents for cardiovascular MRI and conjunctive drug delivery

11.15 am
Panel discussion

Lecture Session: CMR in Electrophysiology Procedures

10.00 am – 11.30 am Hermes Auditorium

Moderators:
Andrew M. Taylor, MD, UCL, Institute of Child Health
Graham Wright, PhD, Sunnybrook Health Sciences Centre

10.00 am
Atrial fibrillation ablation using iCMR
Gaston R. Vergara, MD, University of Utah

Learning Objectives*
> Understand the current use of CMR for management and treatment of patients with atrial fibrillation
> Understand the main challenges and advantages of performing RF ablation for treatment of atrial fibrillation in MRI environment
> Understand the concept of real-time CMR visualization of lesions caused by RF ablation

10.12 am
CRT planning and lesion assessment
Dana C. Peters, PhD, Beth Israel Deaconess Medical Center

Learning Objectives*
> Acquire and analyze images for assessment of ablation lesions, in patients after pulmonary vein isolation or VT ablation, both acutely after the procedure, and at later time points
> Acquire and analyze cardiac MR images for planning a cardiac resynchronization therapy (CRT) procedure
> Incorporate cardiac MR data into pre- and post-procedural evaluation for EP procedures
10.24 am
Electromechanical modelling of the heart for EP and CRT planning
Maxime Sermesant, PhD, INRIA

Learning Objectives*
> Understand how computer models can be used to fuse the different sources of clinical data (anatomy, EP,...)
> Understand how computer models can be adjusted to be patient-specific
> See how computer models can be used to test different therapeutic strategies

10.36 am
MR-guided EP and devices
Wolfgang R. Bauer, MD, PhD, University of Hospital Würzburg

Learning Objectives*
> Understand the epidemiological conflict between indication for increasing number of MR-imaging procedures and growing number of device implants (pacemakers, ICD's)
> Understand the mechanism responsible for making MR imaging hazardous for device and EP electrodes. What makes an electrode MR conditional safe?
> Why is there a need for doing EP procedures in the MR? What besides safety (see above) demands MR imaging from an EP catheter (tracking, visibility, visualization of therapy...)

10.48 am
EP ablation using iCMR
Henry R. Halperin, MD, MA, FAHA, FHRS, Johns Hopkins University

Learning Objectives*
> Understand the factors that lead to recurrences of arrhythmias after ablation including reversible conduction block and gaps in ablation lines
> Understand the use of iCMR in visualizing cardiac ablation lesions, filling in gaps in ablation lines, and guiding ablation procedures
> Understand the technological problems in implementing real time iCMR, and the time course for their resolution

11.00 am
Active catheter and visualization concepts
Michael Guttman, MS, Johns Hopkins University

Learning Objectives*
> Understand some methods used for tracking and displaying the positions of catheter-mounted coils
> Know pros and cons of ‘passive’ versus ‘active’ tracking methods
> Understand how active catheters can facilitate navigation through arteries and heart cavities

11.15 am
Panel discussion
11.30 am – 1.00 pm

Closing Plenary Session: Controversies in CMR

11.30 am – 1.00 pm

Athena Auditorium

Moderators:
Raymond Kwong, MD, MPH, Brigham and Women’s Hospital
Joseph Selvanayagam, MBBS, FRACP, Flinders Medical Centre

11.30 am

Pro: T1 mapping is useful for clinical CMR
Daniel Messroghli, MD, Charite Berlin

Learning Objectives*
> Explain the difference between T1 mapping and conventional MRI techniques
> Name 3 potential clinical applications for cardiac T1 mapping
> Define the technical prerequisites for cardiac T1 mapping

11.52 am

Con: T1 mapping is not ready for clinical use
Tobias Schaeffter, PhD, King’s College London

Learning Objectives*
> Rate the status of T1 mapping for clinical practice
> Know the pitfalls of T1 mapping acquisition techniques
> Know the influence of analysis technique on the T1 relaxation times

12.15 pm

Pro: T2 edema imaging can make a difference in patient management today
Daniel Kim, PhD, New York University

Learning Objectives*
> Understand the basic pathophysiology of myocardial edema due to acute myocardial injury
> Understand the basic MR physics behind T2-weighted CMR and its sensitivity to edema
> Appreciate the clinical use of T2-weighted CMR for diagnosis of myocardial edema

12.37 pm

Con: T2 edema imaging is not ready for use in clinical practice
Robert W. Biederman, MD, Allegheny General Hospital

Learning Objectives*
> Understand the value of T2 imaging
> Understand the limitations of T2 imaging when employed in ischemia/infarct imaging
> Define when T2 imaging is of value and when it may not be
Technologist Workshop

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 pm – 6.00 pm</td>
<td>Room Risso</td>
<td></td>
</tr>
</tbody>
</table>

1.00 pm – 1.05 pm
Welcoming remarks
Susan Eder, ARRT, (MR) (RT), Emory Crawford Long Hospital

1.05 pm – 3.00 pm
The “how to” basics of CMR

Moderator:
Ralph Gentry, ARRT, William Beaumont Hospital

Learning Objectives*
- Appreciate the source of signal generation from which CMR images are created
- Appreciate the basic physics behind CMR image acquisition and reconstruction
- Understand the need for and basic forms of motion compensation or correction in CMR

1.40 pm
It’s a balancing act – pulse sequences & parameters
John Oshinski, PhD, Emory University Hospital

Learning Objectives*
- Understand the tradeoffs between spatial and temporal resolution in CMR
- Understand the tradeoffs between imaging time and image quality in CMR
- Understand the implications of changing MRI contrast parameters on imaging time and image quality in CMR

2.15 pm
Implants and devices – the current safety guidelines
Loren Budge, MD, University of Virginia Health System

Learning Objectives*
- Understand the current safety guidelines and best practices in CMR regarding medical devices and implants
- Recognize the impact on patient safety of following the guidelines
- Become familiar with ongoing advances in device and implant compatibility with MR

3.00 pm – 3.30 pm
Refreshment Break

* At the conclusion of this presentation, the attendee should be better able to
Technologist Workshop
8.30 am – 5.30 pm Room Risso

8.30 am – 10.20 am
Understanding & imaging acquired heart disease

Moderator:
Elizabeth A. Goddu, RT, Beth Israel Deaconess Hospital

8.30 am
Imaging cardiomyopathies
Peter Drivas, RT, Royal Brompton Hospital

Learning Objectives*
> Differential the different types of cardiomyopathies using MRI
> Understand the importance of imaging cardiomyopathies
> Select the most suitable imaging sequences in order to best demonstrate the appropriate cardiomyopathy

9.10 am
Imaging right ventricular dysplasia
Denise Kleindienst, RT, Franz-Volhard-Klinik, Charité Universitätsmedizin Berlin

Learning Objectives*
> New guidelines since Marcus et al 2010
> Cine imaging for global and regional functional abnormalities of the RV and right ventricular outflow tract is essential
> Understand the significance of fatty infiltrations of the RV

9.45 am
Imaging congestive heart failure
Amy Marisa West, MD, University of Minnesota

Learning Objectives*
> Identify the CMR imaging techniques used in a comprehensive examination of patients with congestive heart failure
> Recognize the common cardiac pathologies that result in congestive heart failure
> Be familiar with newer imaging techniques used in the research setting for patients with congestive heart failure

10.30 am – 11.00 am Refreshment Break

11.00 am – 12.30 pm
Abstracts & post processing

Moderator:
Susan Eder, ARRT, (MR) (RT), Emory Crawford Long Hospital

11.00 am
Best abstract presentation
Safety of adenosine stress perfusion cardiac magnetic resonance imaging in patients with aortic stenosis
Stephen Darty, BS, RT-N, MR, Duke Cardiovascular Magnetic Resonance Centre

11.15 am
Post processing
Mercedes Pereyra, MBA, BS, RT (MR)(CT), Circle Cardiovascular Imaging

Learning Objectives*
> Know why to use protocols to scan a patient with regard to the post analysis process
> LV function analysis and acquisition parameters
> Quantification and measurements essential to reach a diagnosis

12.15 pm – 1.30 pm Lunch (on own)

1.30 pm – 3.00 pm
Elements of myocardial viability

Moderator:
Pamela Vincent, MPA, RT, National Institutes of Health

1.30 pm
Why CMR stress viability is necessary:
The clinical perspective
Stamatios Lerakis, MD, Emory University

Learning Objectives*
> Understand the importance of stress MRI
> Understand the importance of viability by CMR
> Understand the clinical importance of both stress CMR and viability findings

2.00 pm
Myocardial viability – a tech’s perspective
Filip DeRidder, MD, UZ Brussels

Learning Objectives*
> Understand the need of myocardial viability
> How to perform myocardial viability, tips and tricks
> Be familiar with different types of myocardial viability protocols

* At the conclusion of this presentation, the attendee should be better able to
2.30 pm
Stress the patient not the technologist
Alison Fletcher, RT, Southampton General Hospital
Learning Objectives*
> Accurately decide which views should be acquired and plan these relevant to clinicians protocol to achieve the most diagnostic scan
> Change the protocol in line with physiological changes in the patient during adenosine administration, whilst understanding how these changes effect the image and scan acquisition to provide the highest achievable diagnostic image quality
> Perform adenosine stress CMRI, understanding physiological changes and complications and adjusting the MR sequence with confidence, knowledge and understanding

3.00 pm – 3.30 pm Refreshment Break

3.30 pm – 5.30 pm
CE-MRA techniques & studies
Moderator:
Alison Fletcher, RT, Southampton General Hospital

3.30 pm
CE-MRA techniques & tips
Ricardo Wage, DCR (R), RBH NHS and Harefield Hospital
Learning Objectives*
> Learn the proper timing of performance CE MRA
> Learn how to rectify if they missed the contrast timing
> The attendee will have the choice to choose the dynamic angle and proper timing of contrast

4.00 pm
Protocol guidelines: imaging the aorta and beyond
James Shambrook, MD, Southampton University Hospitals NHS Trust
Learning Objectives*
> Understand the variety of clinical roles for contrast enhanced MR angiography
> Identify common aortic and other vascular pathologies which can be seen at MR angiography
> Appreciate how evolving MR angiographic techniques, such as time resolved angiography, can be used in clinical practice

4.30 pm
Coronary imaging
Rene Botnar, PhD, King’s College London
Learning Objectives*
> Understand the imaging principles of coronary lumen and vessel wall imaging
> Understand the different MR sequences available for coronary lumen and wall imaging
> Understand the basic principles of respiratory motion correction

5.00 pm
Quiz the techs
Ricardo Wage, DCR (R), RBH NHS and Harefield Hospital
James Shambrook, MD, Southampton University Hospitals NHS Trust
Learning Objectives*
> Understand the clinical utility of contrast enhanced MRA
> Appreciate the problem solving ability of MRA
> Understand how MRA data can be processed for increased diagnostic yield

* At the conclusion of this presentation, the attendee should be better able to
2011 SCMR/Euro CMR Joint Scientific Sessions – Technologist Posters

O38 Safety of adenosine stress perfusion cardiac magnetic resonance imaging in patients with aortic stenosis
Stephen Darty, BS, RT-N, MR, Duke Cardiovascular Magnetic Resonance Center

P353 MRI image sequencing of calcified myocardial masses: liquefaction necrosis of mitral annular calcification (LNMAC), David Collins, MS, The Christ Hospital, Cincinnati, OH

P354 Manual versus automatic inline ventricular function assessment using MRI
Marie Wasielewski, RT, Northwestern University, Chicago, IL

P355 Image based background magnetic field correction for aortic and pulmonary artery flow measurement using phase contrast
Joshua Cheng, RT, St. Francis Hospital, Roslyn, NY

P357 Patient and device related factors affecting artifact size and cardiac visualization when performing cardiac MRI in patients with implanted defibrillators
Cheryl Carroll, BS, RT, University of Pennsylvania Medical Center, Philadelphia, PA

* At the conclusion of this presentation, the attendee should be better able to
POSTER INFORMATION

Poster Sessions with Authors

FRIDAY, FEBRUARY 4, 2011
6.30 pm – 7.30 pm Rhodes Area

POSTER SESSION 1 – Not accredited for CME
You are invited to meet the authors of the following posters on Friday evening during the Wine and Cheese Reception. This year, the posters presented on each day will correspond with the topics being presented in the Oral Abstract Sessions.

Clinical Role of CMR Against Other Modalities:
P 032, 074-077, 243, 244

Congenital: New Frontiers in Therapy or Patient Prognostication:
P 185-193

Improving Technical Quality or Robustness:

Novel CMR Methods in Cardiomyopathy:
P 064, 174-177, 265-289, 299, 300-307, 310-342

Novel Concepts or Techniques:

Vascular MRI: P 379-389, 391-393

SATURDAY, FEBRUARY 5, 2011
12.30 pm – 1.30 pm Rhodes Area

POSTER SESSION 2 – Not accredited for CME
You are invited to meet the poster authors on Saturday afternoon from 12:30 pm – 1:30 pm. This year, the posters presented on each day will correspond with the topics being presented in the Oral Abstract Sessions.

CMR of Ischemia and Viability:
P 001, 078-102, 104-109, 120-138, 144-161, 165-171, 227, 252

Congenital Novel Concepts and Techniques:
P 001, 048-049, 194-220

EP and Interventional Applications: P 245-260

Myocardial, Perfusion, and Regional Strain:
P 012-015, 041, 053-060, 110, 140

Myocardial Scar, Fibrosis, and Edema:
P 016-019, 042-044, 061, 111, 162-163, 261-263, 367

Physiology and Metabolism including Spectroscopy:
P 030-031, 068-073, 113, 142, 164, 178, 240-242, 290, 345-352, 361, 378

Prognosticating CAD: P 114-119, 179-184

Prognosticating Non-coronary Heart Disease: P 291-298, 309

Poster Directory

Basic Translational – New Techniques Ready for Clinical Application

<table>
<thead>
<tr>
<th>Poster</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P001</td>
<td>Hussain, Tarique</td>
<td>Improving congenital heart disease imaging using 3d whole-heart dual-phase MRI</td>
</tr>
<tr>
<td>P002</td>
<td>Jenista, Elizabeth</td>
<td>Design of an adiabatic T2-preparation method optimized for cardiac motion and flow insensitivity at 3T</td>
</tr>
<tr>
<td>P003</td>
<td>Tse, Zion Ts Ho</td>
<td>Improved R-wave detection for enhanced cardiac Gating using an MRI-compatible 12-lead ECG and multi-channel analysis</td>
</tr>
<tr>
<td>P004</td>
<td>Lu, Yingli</td>
<td>Watershed segmentation of basal left ventricle for quantitation of cine cardiac MRI function</td>
</tr>
<tr>
<td>P005</td>
<td>Posina, Kanna</td>
<td>Left atrial volume measurement with magnetic resonance imaging: a comparison of biplane, short axis and long axis methods</td>
</tr>
<tr>
<td>P006</td>
<td>Tse, Zion Ts Ho</td>
<td>Real-EKG extraction and stroke volume from MR-Compatible 12-lead ECGs; testing during stress, in PVC and in AF patients</td>
</tr>
<tr>
<td>P007</td>
<td>Unger, Wyatt</td>
<td>Can real-time CMR provide adequate morphologic or functional data? A real-time CMR/SSFP comparison trial</td>
</tr>
<tr>
<td>P008</td>
<td>Kachenoura, Nadja</td>
<td>The 3d left ventricular geometry integrated in myocardial wall stress estimation is more sensitive than end diastolic mass/volume ratio to characterize afterload-related left ventricular remodeling</td>
</tr>
<tr>
<td>P009</td>
<td>Chaptini, Nayla</td>
<td>A new method to suppress ghosting artifacts arising from long-T1 species in segmented inversion recovery (IR) sequences</td>
</tr>
<tr>
<td>P010</td>
<td>Liu, Songtao</td>
<td>Phantom validation of 17 and 11 heartbeat MOLLI T1 mapping sequence at 3T</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>P011</td>
<td>Lohezic, Maelene</td>
<td>Free-breathing myocardial T2 measurements at 1.5T</td>
</tr>
<tr>
<td>P012</td>
<td>Jogiya, Roy</td>
<td>3D myocardial perfusion-CMR using a multi-transmit coil and k-t PCA reconstruction to detect flow limiting coronary stenosis</td>
</tr>
<tr>
<td>P013</td>
<td>Mousseaux, Elie</td>
<td>Measurement of aortic pulse wave velocity in CMR: comparison of transit time estimators</td>
</tr>
<tr>
<td>P014</td>
<td>Kadiyala, Madhavi</td>
<td>Feature Tracking: A novel method to analyze myocardial strain: Results from the CMR strain study in healthy volunteers</td>
</tr>
<tr>
<td>P015</td>
<td>Ibrahim, El-Sayed</td>
<td>Assessment of myocardial strain using strain-encoding (SENC) MRI: comparison of acquisition strategies</td>
</tr>
<tr>
<td>P016</td>
<td>Ferreira, Vanessa</td>
<td>Quantification of acute myocardial injury by ShMOLLI T1- Mapping, T2-weighted and late gadolinium imaging in patients presenting with chest pain, positive troponins and non-obstructive coronary arteries</td>
</tr>
<tr>
<td>P017</td>
<td>Salerno, Michael</td>
<td>First-pass contrast-enhanced imaging versus equilibrium-phase T1 mapping for determining the distribution volume of gadolinium</td>
</tr>
<tr>
<td>P018</td>
<td>Herzka, Daniel</td>
<td>Independent respiratory navigators for improved 3D PSIR imaging of myocardial infarctions</td>
</tr>
<tr>
<td>P019</td>
<td>Mekkaoui, Choukri</td>
<td>From qualitative to quantitative tractography: a novel method to measure variation and error in diffusion MR tractography data sets of the myocardium</td>
</tr>
<tr>
<td>P020</td>
<td>Cao, J</td>
<td>Assessment of left ventricular filling pressure using mean left atrial transit time from contrast enhanced dynamic MRI</td>
</tr>
<tr>
<td>P021</td>
<td>Xue, Hui</td>
<td>Improved motion correction using image registration based on variational synthetic image estimation: application to inline T1 mapping of myocardium</td>
</tr>
<tr>
<td>P022</td>
<td>Hong, Yoo Jin</td>
<td>Use of contrast-enhancement and high-resolution 3D black-blood MR imaging to identify inflammation in rabbit atherosclerotic plaques</td>
</tr>
<tr>
<td>P023</td>
<td>Derbyshire, John</td>
<td>Golden-step phase encoding for flexible realtime Cardiac MRI</td>
</tr>
<tr>
<td>P024</td>
<td>Messroghli, Daniel</td>
<td>Small animal look-locker inversion recovery (SALLI)</td>
</tr>
<tr>
<td>P025</td>
<td>Kim, Daniel</td>
<td>Highly-accelerated real-time Cine MRI using compressed sensing and parallel imaging</td>
</tr>
<tr>
<td>P026</td>
<td>Azene, Nicole</td>
<td>Intrapericardial delivery of visible microcapsules containing stem cells using XFM (x-ray fused with magnetic resonance imaging)</td>
</tr>
<tr>
<td>P027</td>
<td>Redheuil, Alban</td>
<td>Measuring aortic distensibility with CMR using central pressures estimated in the magnet: comparison with carotid and peripheral pressures</td>
</tr>
<tr>
<td>P028</td>
<td>Krishnamurthy, Ramkumar</td>
<td>Faster inversion recovery prepared T1 weighted segmented turbo field echo sequence (IR-TFE): evaluating options for eliminating the start-up shot</td>
</tr>
<tr>
<td>P029</td>
<td>Geyer, Leah</td>
<td>Assessment of left and right ventricular volumes and function with treadmill exercise stress cardiovascular magnetic resonance</td>
</tr>
<tr>
<td>P030</td>
<td>Zhong, Xiaodong</td>
<td>Comprehensive assessment of myocardial mechanics in mice using 3D cine DENSE</td>
</tr>
<tr>
<td>P031</td>
<td>Chow, Kelvin</td>
<td>Characterization of myocardial T1 and partition coefficient as a function of time after gadolinium delivery in healthy subjects Basic Translational – Post-processing</td>
</tr>
</tbody>
</table>

Basic Translational – Post-processing

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P032</td>
<td>Bollache, Emilie</td>
<td>The clinical value of phase-contrast CMR mitral inflow diastolic parameters: comparison with echocardiography</td>
</tr>
<tr>
<td>P033</td>
<td>Speiser, Uwe</td>
<td>3T CMR for quantification of aortic valve area - a comparison between continuity equation via phase contrast sequences and planimetric analysis</td>
</tr>
<tr>
<td>P034</td>
<td>Jolly, Marie-Pierre</td>
<td>Automatic per-segment analysis of myocardial perfusion MRI</td>
</tr>
<tr>
<td>P035</td>
<td>Rofe, Christopher</td>
<td>Cardiac magnetic resonance left ventricular quantitative analysis post gadolinium: reliable and reproducible?</td>
</tr>
<tr>
<td>P036</td>
<td>Chuang, Michael</td>
<td>Impact of left ventricular trabeculations and papillary muscles on measures of cavity volume and ejection fraction</td>
</tr>
</tbody>
</table>
P037 Pednekar, Amol
Ultrafast in-line interactive m-mode tool for quantification of left-ventricular (LV) septo-lateral wall motion (SLWM) from high-temporal resolution (6-12ms) cardiac cine steady-state free precession (SSFP) images.

P038 Ting, Samuel
Improved real-time blood flow velocity quantification via application of the Karhunen-Loeve transform for increased signal-to-noise ratio.

P039 Kellman, Peter
Automatic LV localization and view planning for cardiac MRI acquisition.

P040 James, Susan
Short axis versus axial Cine SSFP MR imaging for assessment of right and left ventricular function: intrapatient correlation with phase-contrast flow measurements.

P041 Chiribiri, Amedeo
High-resolution analysis of transmural myocardial perfusion gradients from first pass perfusion MR data. Diagnostic criteria for the detection of coronary artery disease.

P042 Vijayakumar, Sathya
Dependence of scar contrast in LGE images on the time interval after contrast injection.

P043 Piechnik, Stefan
Gaussian modeling for operator-independent and threshold-free volumetric segmentation of phase sensitive inversion recovery late gadolinium enhanced images.

P044 Bakhos, Lara
Predictive accuracy of semi-quantitative scoring to screen for unfavorable ejection fraction and infarct size.

P045 Tsafarisis, Sotirios
A fully-automated statistical method for characterization of flow artifact presence in cardiac MRI.

P046 Lefort, Muriel
Automated 3D measurements of the aortic length using the Hough transform.

P047 Heiberg, Einar
Improved quantification of T2* relaxation in magnetic resonance imaging.

Basic Translational – Pre-clinical Validation of an Existing Technique

P048 Fabini, Kayleen
MR-derived right ventricular parameters can predict pulmonary hypertension.

P049 Valverde, Israel
Predicting hemodynamics in native and residual coarctation: Preliminary results of a Rigid-Wall Computational-Fluid-Dynamics model (RW-CFD) validated against clinically invasive pressure measures at rest and during pharmacological stress.

P050 Song, Ting
Heart failure myocardial perfusion swine study with semi-quantitative analysis.

P051 Liu, Songtao
Myocardial and blood T1 quantification in normal volunteers at 3T.

P052 Swoboda, Peter
Reproducibility of strain and twist measurements calculated using CSPAMM tagging.

P053 Flewitt, Jacqueline
Assessment of coronary endothelial function using blood oxygenation level dependent cardiovascular magnetic resonance imaging (BOLD-CMR) in a canine model.

P054 Kino, Aya
Clinical evaluation of inline motion correction for cardiac perfusion MRI.

P055 Schuster, Andreas
Quantitative assessment of myocardial perfusion by magnetic resonance imaging in the isolated porcine heart.

P056 Campbell, Adrienne
Improved cardiac arterial spin labelling in the mouse heart by optimisation of acquisition and analysis.

P057 Cates, Joshua
Statistical shape modeling of the left atrium from MRI of patients with atrial fibrillation.

P058 Zhong, Xiaodong
Comparison of SNR efficiencies and strain for cine DENSE using conventional EPI, flyback EPI and spiral k-space trajectories.

P059 Zarinabad Nooralipour, Niloufar
Comparison of different deconvolution algorithms for voxel-wise quantitative MR perfusion assessment.

P060 Breton, Elodie
Integrated quantitative first-pass cardiac perfusion MRI protocol.

P061 Wassmuth, Ralf
T2-mapping in volunteers: influence of sequence, spatial orientation and interindividual variability.

P062
Withdrawn by Author.

P063 van Schinkel, Linda
Association between pulse wave velocity from velocity-encoded MRI and advanced diastolic function indices assessed by speckle tracking strain analysis in Diabetes Mellitus type 1.
P064 Steen, Henning
Comparison of temperature measurements of pacemaker leads in a 1.0T high field open MRI and a 1.5T classic cylindrical MRI: initial results

P065 Steen, Henning
Temperature measurements of pacemaker leads in a 1.0T high field open MRI using various MR sequences: initial results

P066 Bächler, Pablo
Assessment of blood flow patterns in the pulmonary artery using 4D flow

P067 Ennis, Daniel
Flip angle optimization for quantitative phase contrast MR imaging

P068 Jones, Alexander
Detailed assessment of the hemodynamic response to psychosocial stress using real-time MRI

P069 Coelho-Filho, Otavio
Characterization of peri-infarct zone by cardiac magnetic resonance: validation compared to ex-vivo imaging and post-mortem histology

P070 Ugander, Martin
Edema by T2-weighted imaging in salvaged myocardium is extracellular, not intracellular

P071 Gaborit, Bénédicte
Epicardial fat volume is associated with coronary endothelium-dependent vasomotor response in healthy subjects

P072 Westenberg, Jos
Associations between aortic pulse wave velocity and aortic and carotid vessel wall thickness in patients with hypertension: assessment with MRI

P073 Liu, Chia-Ying
Pulmonary artery stiffness in chronic obstructive pulmonary disease (COPD) - the mesa COPD study

CAD Ischemia

P074 Speiser, Uwe
Myocardial perfusion 3-Tesla cardiac magnetic resonance vs. exercise electrocardiogram for diagnostics of coronary artery disease

P075 Jaarsma, Caroline
Diagnostic performance of PET, SPECT and CMR perfusion imaging for the detection of significant coronary artery disease - a meta-analysis

P076 Aldrovandi, Annachiara
Acute myocardial infarction without significant coronary stenosis: evaluation by LE-CMR and CT coronary angiography

P077 Groothuis, Jan
Combined anatomical and functional diagnostic work-up of patients with suspected coronary artery disease using cardiac computed tomography and magnetic resonance imaging

P078 Ma, Heng
Adenosine-induced stress myocardial perfusion MRI using SW-CG-HYPR with whole left ventricular coverage: comparison of results with X-ray angiography in patients with suspected CAD

P079 Khoo, Jeffrey
Tolerance, safety and accuracy of stress cardiovascular magnetic resonance in routine clinical practice

P080 Aldrovandi, Annachiara
Evaluation of papillary myocardial infarction: incremental value of a short time inversion vs standard late enhancement imaging

P081 Ashrafpoor, Golmehr
Stress cardiac magnetic resonance in an outpatient setting: a four year experience in > 1000 patients

P082 Maredia, Neil
A comparison of high-resolution and standard cardiovascular magnetic resonance myocardial perfusion imaging for the detection of myocardial ischaemia

P083 Morton, Geraint
Comparison of cardiac magnetic resonance imaging and positron emission tomography for the diagnosis and localization of coronary artery disease

P084 Masci, Pier Giorgio
Relationship between location and size of myocardial infarction and their reciprocal influences on post-infarction left ventricular remodeling

P085 Fairbairn, Timothy
Correlation of fractional flow reserve with non-invasive tests for the detection of ischaemia due to intermediate coronary artery stenosis

P087 O h-Ici, Darach
Stress perfusion cardiac MRI in women

P088 Mamone, Michael
Safety and feasibility of high dose stress dobutamine MRI very early after acute myocardial infarction
<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P089</td>
<td>Morton, Geraint</td>
<td>Correlation between an angiographic and a cardiac magnetic resonance score of myocardial jeopardy using standard and high-resolution perfusion sequences</td>
</tr>
<tr>
<td>P090</td>
<td>Ariff, Ben</td>
<td>The ischemic area-at-risk on T2-weighted MRI shows recovery of systolic strain at 1 year</td>
</tr>
<tr>
<td>P091</td>
<td>Patel, Amit</td>
<td>Automated quantification of myocardial perfusion based on segmentation and non-rigid registration of contrast-enhanced cardiac magnetic resonance images</td>
</tr>
<tr>
<td>P092</td>
<td>Luu, Judy</td>
<td>Functional significance of Blood Oxygen Level Dependent (BOLD) imaging in patients with coronary artery disease - a validation study using fractional flow reserve</td>
</tr>
<tr>
<td>P093</td>
<td>Barac, Ana</td>
<td>Cine CMR diastolic function parameters in acute ST-elevation MI (STEMI) patients are associated with cardiac injury and left ventricular strain</td>
</tr>
<tr>
<td>P094</td>
<td>Danilov, Tatyana</td>
<td>Late gadolinium-enhancement cardiovascular magnetic resonance imaging and angiographic characteristics of patients referred for evaluation of new onset cardiomyopathy</td>
</tr>
<tr>
<td>P095</td>
<td>Yun, Chun-Ho</td>
<td>Diagnostic performance of 3T stress magnetic resonance myocardial perfusion imaging (MRMPI) using 32-channel cardiac coil in patients with coronary artery disease</td>
</tr>
<tr>
<td>P096</td>
<td>Farazandeh, Mani</td>
<td>Elevation of high sensitive troponin T after CMR stress testing</td>
</tr>
<tr>
<td>P097</td>
<td>Bernhardt, Peter</td>
<td>Cardiac magnetic resonance adenosine perfusion at 3 Tesla is superior to 1.5 Tesla for detection of relevant coronary artery stenosis</td>
</tr>
<tr>
<td>P098</td>
<td>Kociemba, Anna</td>
<td>Detection of myocardial oedema with the use of diffusion-weighted imaging in acute myocardial infarction</td>
</tr>
<tr>
<td>P099</td>
<td>Berger, Alexander</td>
<td>Wall motion recovery in dobutamine stress magnetic resonance imaging</td>
</tr>
<tr>
<td>P100</td>
<td>Klein, Christoph</td>
<td>Direct comparison of CMR dobutamine stress wall motion and perfusion analysis with adenosine perfusion in patients after bypass surgery</td>
</tr>
<tr>
<td>P101</td>
<td>Strach, Katharina</td>
<td>Feasibility of high-dose dobutamine stress SSFP cine MRI at 3 Tesla with patient adaptive local RF shimming using dual-source RF transmission: Initial results</td>
</tr>
<tr>
<td>P102</td>
<td>Ashrafpoor, Golmehr</td>
<td>Stress cardiac magnetic resonance imaging in elderly patients</td>
</tr>
<tr>
<td>P103</td>
<td></td>
<td>Withdrawn by Author</td>
</tr>
<tr>
<td>P104</td>
<td>Richardson, James</td>
<td>Adenosine stress perfusion CMR accurately identifies the culprit vessel</td>
</tr>
<tr>
<td>P105</td>
<td>Karamitsos, Theodoros</td>
<td>Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance imaging</td>
</tr>
<tr>
<td>P106</td>
<td>Langhans, Birgit</td>
<td>Temporal changes of microvascular obstruction and infarct border zone after acute myocardial infarction assessed by contrast enhanced magnetic resonance imaging</td>
</tr>
<tr>
<td>P107</td>
<td>Richardson, James</td>
<td>Evaluation of the significance of intermediate coronary artery stenoses by stress perfusion CMR</td>
</tr>
<tr>
<td>P108</td>
<td>Springeling, Tirza</td>
<td>Comparison between transmural and non-transmural infarction and the area at risk using T2 weighted imaging</td>
</tr>
<tr>
<td>P109</td>
<td>Igual, Begoña</td>
<td>Is useful the visual estimate of transmurality of hipoperfusion in stress cardiac magnetic resonance?</td>
</tr>
<tr>
<td>P110</td>
<td>Zun, Zungho</td>
<td>Myocardial ASL perfusion reserve test detects ischemic segments in initial cohort of 10 patients with angiographic CAD</td>
</tr>
<tr>
<td>P111</td>
<td>Rundell, Veronica</td>
<td>Time-dependency of edema-based assessment of area-at-risk in reperfused acute myocardial infarction</td>
</tr>
<tr>
<td>P112</td>
<td>Kali, Avinash</td>
<td>Detecting reperfusion myocardial hemorrhage with T2 and T2* maps at 1.5T</td>
</tr>
<tr>
<td>P113</td>
<td>Gardier, Stephany</td>
<td>Magnetic resonance imaging of post-systolic shortening in a closed-chest rat model of coronary occlusion using myocardial tagging</td>
</tr>
<tr>
<td>P114</td>
<td>Catalano, Oronzo</td>
<td>Prognostic value of first pass stress perfusion cardiac magnetic resonance in stable coronary artery disease</td>
</tr>
<tr>
<td>P115</td>
<td>Izquierdo, Maria</td>
<td>Clinical predictors of microvascular obstruction by delayed enhanced CMR in STEMI patients</td>
</tr>
</tbody>
</table>
POSTERS

P116	Grothoff, Matthias	Right ventricular involvement in acute myocardial infarction. Risk stratification by visualization of wall motion, edema and delayed enhancement cardiovascular magnetic resonance
P117	Bertaso, Angela	Prognostic value of adenosine stress perfusion cardiac magnetic resonance with late gadolinium enhancement
P118	Dhakshinamurthy, Vijay	Prognostic utility and clinical impact of adenosine stress perfusion CMR scan in patients with known coronary disease
P119	Bertaso, Angela	Stress perfusion CMR reliably risk stratifies patients with prior exercise treadmill testing

CAD Other

<p>| P120 | Couri, Daniel | Recovery of left ventricular dysfunction after ST-elevation myocardial infarction: Comparison between 2D Doppler echocardiography and contrast enhanced cardiac MRI |
| P121 | Carbone, Iacopo | Standardizing T2 measurements for the quantitative assessment of regional myocardial edema |
| P122 | Kecker, Liane | Measurement of phase-contrast MRI mitral flow and lateral wall motion for assessment of diastolic function in a normal collective |
| P123 | Maret, Eva | Phase analysis and mechanical dispersion perform equally in the detection of myocardial scar on cine magnetic resonance imaging |
| P124 | Vasu, Sujethra | Regadenoson is a better myocardial vasodilator than dipyridamole in normal volunteers, but the data is less compelling in patients |
| P125 | Danilov, Tatyana | Extent of wall motion abnormalities with cardiovascular magnetic resonance imaging overestimates the degree of coronary artery disease in patients with ischemic cardiomyopathy |
| P126 | Karamitsos, Theodoros | Patients with Syndrome X have normal myocardial oxygenation and perfusion compared to normal volunteers: a 3 Tesla cardiovascular magnetic resonance imaging study |
| P127 | Woo, Vincent | Safety and efficacy of early atropine injection for dobutamine stress cardiac magnetic resonance: a single center experience |
| P128 | Vasu, Sujethra | Optimal timing of rest perfusion with regadenoson stress testing – normal volunteer study of quantitative MRI perfusion |
| P129 | Schmidt, Anna | Subclinical perfusion deficits in patients with Type 2 diabetes detectable with cardiovascular magnetic resonance imaging |
| P130 | Punemann, Valentina | Relationship between aortic stiffness and modes of left ventricular deformation at rest and dobutamine-stress differ in the presence of preserved and compromised contractile capacity |
| P131 | Shafi, Nabil | Quantitative assessment of global and regional strain in relation to infarct size in patients with myocardial infarction |
| P132 | Burchell, Tom | The regression of myocardial oedema in the first 3 months post ST-elevation MI in patients treated with primary angioplasty |
| P133 | Zia, Mohammad | Thrombus aspiration during primary percutaneous coronary intervention leads to reduced myocardial edema and microvascular obstruction in infarct segment post acute myocardial infarction |
| P134 | Kecker, Liane | MRI assessment of diastolic dysfunction using the echocardiographic criteria of diastolic mitral blood flow, lateral wall motion velocity and pulmonary vein flow |
| P135 | Masci, Pier Giorgio | Influence of infarct healing on left ventricular remodeling in patients with acute st-segment elevation myocardial infarction |
| P136 | Mikami, Yoko | The quantitative assessment of microvascular obstruction size using first-pass perfusion cardiac MR |</p>
<table>
<thead>
<tr>
<th>Poster No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P137</td>
<td>Fakhri, Asghar</td>
<td>Exploratory use of cardiac magnetic resonance imaging in liver transplantation; a one-stop shop for preoperative cardio-hepatic evaluation</td>
</tr>
<tr>
<td>P138</td>
<td>Ghimire, Gopal</td>
<td>Temporal changes in diastolic function measured by volumetric CMR after ST elevation myocardial infarction</td>
</tr>
<tr>
<td>P139</td>
<td>Masip, Lambert</td>
<td>How to perform left and right ventricular function quantification in cardiac magnetic resonance imaging with a simple mouse click</td>
</tr>
<tr>
<td>P140</td>
<td>Biris, Octavia</td>
<td>A protocol for the measurement of myocardial blood volume and water exchange</td>
</tr>
<tr>
<td>P141</td>
<td>Delattre, Bénédicte</td>
<td>Real time cardiac MRI: spline-based spatio-temporal reconstruction of spiral data</td>
</tr>
<tr>
<td>P142</td>
<td>Ortiz Pérez, José</td>
<td>Serum ACE2 activity correlates with infarct size and left ventricular dysfunction during acute myocardial infarction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAD Viability</td>
</tr>
<tr>
<td>P144</td>
<td>Bernhardt, Peter</td>
<td>Myocardial scar extent evaluated by cardiac magnetic resonance imaging in ICD patients: differences between polymorphic and monomorphic spontaneous events during follow-up</td>
</tr>
<tr>
<td>P145</td>
<td>Olimulder, Marlon</td>
<td>Infarct tissue characteristics of patients with versus without early revascularization for acute myocardial infarction: a contrast enhancement cardiovascular magnetic resonance imaging study</td>
</tr>
<tr>
<td>P146</td>
<td>Erica, Dall’Armellina</td>
<td>Quantification of acute myocardial injury in STEMI patients post revascularization at 3Tesla. Comparison of T1-mapping, late gadolinium and edema imaging</td>
</tr>
<tr>
<td>P147</td>
<td>Van Assche, Lowie</td>
<td>The prevalence of microvascular obstruction in acute myocardial infarction: importance of ST elevation, infarct size, transmurality and infarct age</td>
</tr>
<tr>
<td>P148</td>
<td>Ugander, Martin</td>
<td>Myocardial extracellular volume imaging by CMR quantitatively characterizes myocardial infarction and subclinical myocardial fibrosis</td>
</tr>
<tr>
<td>P149</td>
<td>Yilmaz, Ali</td>
<td>Molecular magnetic resonance imaging (MRI) of inflamed myocardium using ferucarbotran in patients with acute myocardial infarction</td>
</tr>
<tr>
<td>P150</td>
<td>Mandy, Damien</td>
<td>Prediction of modifications in size and peri-infarct zone by T2-imaging after an acute myocardial infarction during longitudinal follow-up by cardiac MRI</td>
</tr>
<tr>
<td>P151</td>
<td>Ghugre, Nilesh</td>
<td>Evolution of gray zone after acute myocardial infarction: influence of microvascular obstruction</td>
</tr>
<tr>
<td>P152</td>
<td>Wassmuth, Rolf</td>
<td>Embolic myocardial infarctions look different: a comparison of experimental and fatal embolic lesions</td>
</tr>
<tr>
<td>P153</td>
<td>Schuster, Andreas</td>
<td>Myocardial feature tracking for viability assessment in ischemic cardiomyopathy</td>
</tr>
<tr>
<td>P154</td>
<td>Goetti, Robert</td>
<td>Comparison of 3D and 2D acquisition of late gadolinium enhancement in patients with acute, subacute and chronic myocardial infarction</td>
</tr>
<tr>
<td>P155</td>
<td>Malek, Lukasz</td>
<td>Infarct zone viability in stable patients with ST-elevation myocardial infarction not undergoing reperfusion – the COAT trial registry</td>
</tr>
<tr>
<td>P156</td>
<td>Pérez David, Esther</td>
<td>Usefulness of myocardial circumferential strain in acute myocardial infarction for prediction of contractile function recovery: a MRI myocardial tagging study</td>
</tr>
<tr>
<td>P157</td>
<td>Oliveira, Amarino</td>
<td>Microvascular obstruction persistence after early-reperfused myocardium infarction by CMR: analysis of first week and six months after STEMI</td>
</tr>
<tr>
<td>P158</td>
<td>Schuster, Andreas</td>
<td>Endystolic versus enddiastolic scar imaging for transmurality assessment</td>
</tr>
<tr>
<td>P159</td>
<td>Bakhos, Lara</td>
<td>Prevalence of myocardial viability in dysfunctional areas by cardiovascular magnetic resonance in patients with coronary artery disease</td>
</tr>
<tr>
<td>P160</td>
<td>Lund, Gunnar</td>
<td>Improved reproducibility of LV volumetry and infarct size measurement using a standardized evaluation protocol for cardiac magnetic resonance imaging</td>
</tr>
<tr>
<td>P161</td>
<td>Mikami, Yoko</td>
<td>Effect of myocardial hemorrhage on functional recovery in patients with reperfused acute myocardial infarction</td>
</tr>
</tbody>
</table>
Posters

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P162</td>
<td>DiBella, Edward</td>
<td>Late Gadolinium Enhancement imaging using stack of stars and compressed sensing</td>
</tr>
<tr>
<td>P163</td>
<td>Peters, Dana</td>
<td>Transmularity mapping of left ventricular scar: impact of spatial resolution</td>
</tr>
<tr>
<td>P164</td>
<td>Delattre, Bénédicte</td>
<td>Manganese kinetics demonstrated a double contrast in acute but not in chronic infarction in a mouse model of myocardial ischemia reperfusion</td>
</tr>
</tbody>
</table>

Clinical Outcome and Prognosis

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P165</td>
<td>Kelle, Sebastian</td>
<td>Prognostic value of dobutamine stress cardiovascular magnetic resonance in patients with previous coronary revascularization</td>
</tr>
<tr>
<td>P166</td>
<td>Jolly, Umjeet</td>
<td>Abnormal intra-thoracic fat distribution in patients with metabolic syndrome with and without myocardial infarction</td>
</tr>
<tr>
<td>P167</td>
<td>Schmidt, Andre</td>
<td>Effects of cardiac rehabilitation on left ventricle function and mass evaluated by cardiac magnetic resonance imaging in post myocardial infarction patients</td>
</tr>
<tr>
<td>P168</td>
<td>Zaman, Arshad</td>
<td>Investigation of the change in myocardial blood flow by perfusion CMR after revascularisation of chronically occluded coronary arteries</td>
</tr>
<tr>
<td>P169</td>
<td>Doyle, Mark</td>
<td>Effectiveness of cardioprotective medication in women with suspected ischemic heart disease syndrome: the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study</td>
</tr>
<tr>
<td>P170</td>
<td>Zaman, Arshad</td>
<td>Assessment of myocardial perfusion-CMR in left main stem disease (LMS) in the CEMARC study</td>
</tr>
<tr>
<td>P171</td>
<td>Soenksen, Luis</td>
<td>T2-weighted cardiac magnetic resonance imaging: a quantitative approach for measuring myocardial edema after reperfusion and its persistency in acute ischemic heart disease</td>
</tr>
<tr>
<td>P172</td>
<td>Simprini, Lauren</td>
<td>Blood stasis in the descending thoracic aorta and its relationship to cardiac functional parameters</td>
</tr>
<tr>
<td>P173</td>
<td>Kalisz, Kevin</td>
<td>Detection of renal dysfunction by point of care creatinine testing in patients undergoing peripheral MR angiography</td>
</tr>
<tr>
<td>P174</td>
<td>McAlindon, Elisa</td>
<td>Prevalence of non-cardiac pathology on cardiovascular magnetic resonance studies</td>
</tr>
<tr>
<td>P175</td>
<td>Duckett, Simon</td>
<td>Systolic dyssynchrony index derived from cardiac magnetic resonance imaging predicts left ventricular remodeling in heart failure patients undergoing CRT</td>
</tr>
<tr>
<td>P176</td>
<td>Muellerleile, Kai</td>
<td>Restrictive filling patterns in patients with reduced systolic left ventricular function: identification by velocity encoded magnetic resonance imaging</td>
</tr>
<tr>
<td>P177</td>
<td>de Ville de Goyet, Maëlle</td>
<td>Cardiac magnetic resonance imaging (CMRI) as a first-line approach to subclinical heart failure in children undergoing cardiotoxic chemotherapy</td>
</tr>
<tr>
<td>P178</td>
<td>Kodali, Sobhan</td>
<td>A reversal of Glagov’s hypothesis; a preliminary demonstration by cardiac magnetic resonance</td>
</tr>
<tr>
<td>P179</td>
<td>Vermes, Emmanuelle</td>
<td>Prognostic significance of regional edema and quantitative assessment of late gadolinium enhancement in patients with acute myocarditis</td>
</tr>
<tr>
<td>P180</td>
<td>Coelho-Filho, Otavio</td>
<td>Characterization of peri-infarct zone by CMR is a robust predictor of major adverse events and is strongly associated with systemic inflammatory response post-myocardial infarction</td>
</tr>
<tr>
<td>P181</td>
<td>Eitel, Ingo</td>
<td>Long-term prognostic value of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction</td>
</tr>
<tr>
<td>P182</td>
<td>Onishi, Takayuki</td>
<td>Impact of right ventricular dysfunction assessed by cardiac magnetic resonance imaging on prediction of short term and long term prognoses after acute inferior myocardial infarction</td>
</tr>
<tr>
<td>P183</td>
<td>de Waha, Suzanne</td>
<td>Relationship and prognostic value of microvascular obstruction and infarct size in st-elevation myocardial infarction as visualized by magnetic resonance imaging</td>
</tr>
<tr>
<td>P184</td>
<td>Kancharla, Krishna</td>
<td>Right ventricular function assessment by cardiac MRI as predictor of outcomes in coronary artery bypass graft surgery</td>
</tr>
<tr>
<td>Session 10: Congenital Heart Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P185 Schuler, Pia</td>
<td>Atrial septal defect: hemodynamic changes before and after closure assessed with magnetic resonance exercise imaging</td>
<td></td>
</tr>
<tr>
<td>P186 Bellsham-Revell, Hannah</td>
<td>Global improvement in right ventricular function after Stage II Norwood operation in children with hypoplastic left heart assessed by serial MRI</td>
<td></td>
</tr>
<tr>
<td>P187 Valente, Anne Marie</td>
<td>International multicenter tetralogy of Fallot registry: identifying predictors of adverse outcomes using cardiac MRI parameters</td>
<td></td>
</tr>
<tr>
<td>P188 Lim, Alicia</td>
<td>MRI evaluation of left ventricular remodeling following stent angioplasty of native coarctation</td>
<td></td>
</tr>
<tr>
<td>P189 Andrew, Jabbour</td>
<td>Right ventricular morphology and function in patients with Noonan’s syndrome after pulmonary intervention</td>
<td></td>
</tr>
<tr>
<td>P190 Zagrosek, Anja</td>
<td>Hemodynamic impact of surgical correction of pectus excavatum - a cardiovascular magnetic resonance study</td>
<td></td>
</tr>
<tr>
<td>P191 Riesenkampff, Eugenié</td>
<td>Computer aided planning of patches and conduits for surgery in congenital heart disease</td>
<td></td>
</tr>
<tr>
<td>P192 Secinaro, Aurelio</td>
<td>Cardiovascular magnetic resonance assessment in previously repaired ALCAPA</td>
<td></td>
</tr>
<tr>
<td>P193 Grothoff, Matthias</td>
<td>Differences between early versus late correction of Tetralogy of Fallot (TOF) in cardiac magnetic resonance (CMR)</td>
<td></td>
</tr>
<tr>
<td>P194 Luijnenburg, Saskia</td>
<td>Serial follow-up of biventricular function, exercise capacity and NT-proBNP measurements in repaired tetralogy of Fallot: is there a role for MR stress imaging?</td>
<td></td>
</tr>
<tr>
<td>P195 Chen, Sylvia</td>
<td>Impact of abnormal septal geometry on cardiac output in Ebstein’s anomaly with tricuspid regurgitation compared to repaired Tetralogy of Fallot</td>
<td></td>
</tr>
<tr>
<td>P196 Prakash, Ashwin</td>
<td>Association between aortopulmonary collateral flow and clinical status late after Fontan operation</td>
<td></td>
</tr>
<tr>
<td>P197 Muzzarelli, Stefano</td>
<td>Prediction of hemodynamic severity of coarctation: a magnetic resonance imaging based prediction tree</td>
<td></td>
</tr>
<tr>
<td>P198 Rickers, Carsten</td>
<td>Assessment of pulmonary vascular volume and lung perfusion in patients with hypoplastic left heart syndrome (HLHS) in Fontan-circulation</td>
<td></td>
</tr>
<tr>
<td>P199 Dabir, Darius</td>
<td>First-pass and high-resolution ECG-gated MRA of the thoracic vasculature in children and adolescents using gadobutrol at 3T</td>
<td></td>
</tr>
<tr>
<td>P200 Campbell, Michael</td>
<td>Evaluation of coronary artery disease in congenital heart disease and pediatrics utilizing adenosine stress perfusion</td>
<td></td>
</tr>
<tr>
<td>P201 Pitcher, Alex</td>
<td>Visualisation of aortic flow disturbance in Marfan syndrome by 4D phase-contrast CMR</td>
<td></td>
</tr>
<tr>
<td>P202 Shariat, Masoud</td>
<td>Pulmonary vein flow pattern in patients with bidirectional cavopulmonary connection or Fontan circuit</td>
<td></td>
</tr>
<tr>
<td>P203 Hamilton-Craig, Christian</td>
<td>Quantification of aortic regurgitation and stroke volume by CMR - variation due to slice plane position. It matters where you measure!</td>
<td></td>
</tr>
<tr>
<td>P204 Taylor, Michael</td>
<td>Right ventricular strain in patients with tetralogy of Fallot</td>
<td></td>
</tr>
<tr>
<td>P205 Bellsham-Revell, Hannah</td>
<td>Inter-stage right ventricular remodeling in hypoplastic left heart syndrome</td>
<td></td>
</tr>
<tr>
<td>P206 Francois, Christopher</td>
<td>Analysis of right heart flow patterns in repaired Tetralogy of Fallot with 4D flow-sensitive MRI</td>
<td></td>
</tr>
<tr>
<td>P207 Hoyer, Andrew</td>
<td>Strain and strain rate analysis of the right ventricle in patients with hypoplastic left heart syndrome</td>
<td></td>
</tr>
<tr>
<td>P208 Fitz, David</td>
<td>Bicuspid aortic valve phenotype and aortic disease: a magnetic resonance study</td>
<td></td>
</tr>
<tr>
<td>P209 Madriago, Erin</td>
<td>Impaired adenosine-induced myocardial perfusion in children with mild/moderate aortic stenosis using quantitative magnetic resonance imaging</td>
<td></td>
</tr>
<tr>
<td>P210 Hart, Christopher</td>
<td>Congenital heart defect specific volumetric data in children with Hypoplastic Left Heart Syndrome measured by CMR</td>
<td></td>
</tr>
</tbody>
</table>
P211 Rossi, Alexia Changes in ascending aorta dimensions, aortic valve function and systolic ventricular function over time in patients with congenital aortic stenosis
P212 Bellsham-Revell, Hannah Dobutamine stress MRI catheterisation in patients with hypoplastic left heart syndrome after Fontan completion: preliminary results
P213 Misra, Nilanjana Correction of phase offset errors in cardiovascular magnetic resonance using background subtraction from stationary tissue
P214 Nordmeyer, Sarah Selective pulmonary venous flow visualization and quantification by flow-sensitive four-dimensional cine magnetic resonance imaging facilitates and improves the accurate diagnosis of partial anomalous pulmonary venous drainage
P215 Finnemore, Anna Impact of neonatal cardiac receive-array coil on SNR and CNR in newborn infants
P216 Kyavar, Majid Comparison between doppler derived strain and strain rate imaging and cardiac magnetic resonance in assessing right ventricular function late after repaired tetralogy of Fallot
P217 Rickers, Carsten The impact of anatomical subgroups for regional and global function of the right ventricle in hypoplastic left heart syndrome
P218 Clement-Guinaudeau, Stephanie Internal flow fraction as a potential indicator of pulmonary valve replacement in tetralogy of Fallot patients
P219 Camarda, Joseph Biophysical properties of the aorta in patients with Marfan syndrome and related connective tissue disorders: evaluation with MRI and computational fluid dynamics modeling
P220 Festa, Pierluigi Right atrial MRI measurement in operated Fallot. Correlation with major atrial arrhythmias
P221 Bhatla, Puneet Agreement of 3D-SSFP and echocardiography for aortic root dimensions
P222 Sarikouch, Samir Gender aspects in atrial volumetry
P223 Gabbert, Dominik Precise automated determination of the total and segmented right ventricular volumes for functional studies of the right ventricle using CMR
P224 Windram, Jonathan The Feed and Sleep method. How to perform a cardiac MRI in the 1st year of life without the need for general anesthesia
P225 Nordmeyer, Sarah Four-dimensional velocity encoded magnetic resonance imaging for more accurate blood flow quantification in complex flow
P226 Fieno, David In-vivo right ventricular myocardial perfusion assessment using BOLD and first-pass cardiac magnetic resonance

Coronary CMR
P227 Khambekar, S Dobutamine stress cardiovascular MR in clinical practice: a single centre experience
P229 Henningsson, Markus Respiratory motion correction with a 2D self-navigator from BSSFP dummy profiles
P230 Ishida, Masaki Impact of an abdominal belt on breathing patterns to improve the quality of whole-heart coronary magnetic resonance angiography: comparison between UK and Japan
P231 Collins, Masaki Measurement of diastolic left ventricular function with ultra-fast phase contrast MRI
P232 Suever, Jonathan Characterization of coronary vein motion in patients with low and moderate ejection fractions
P233 Ishida, Masaki Whole heart coronary MRA at 3.0T: A comparison between multi and single- RF transmission
P234 Schonberger, Michael Time-resolved MR venography pre catheter-based ablation for atrial fibrillation
P235 Hussain, Tariq Coronary vessel wall assessment after Kawasaki Disease
P236 Smith, Travis Retrospective slice prescription compensation improves coronary cross-sectional area measurement by MRI
P237 Chatterjee, Neil Phase contrast MRI measurement of e/a and e'/e'
POSTERS

<table>
<thead>
<tr>
<th>Paper</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P238</td>
<td>Wu, Holden</td>
<td>Multi-phase coronary magnetic resonance angiography using a 3D cones trajectory</td>
</tr>
<tr>
<td>P239</td>
<td>Scott, Andrew</td>
<td>Simultaneous 3D left and right coronary artery vessel wall imaging</td>
</tr>
<tr>
<td>P240</td>
<td>Porto, Italo</td>
<td>Peripheral levels of circulating progenitor cells correlate with area at risk and microvascular obstruction at cardiac magnetic resonance imaging in patients with ST-elevation myocardial infarction</td>
</tr>
<tr>
<td>P241</td>
<td>Peel, Sarah</td>
<td>Post-contrast non-selective double inversion recovery imaging of the coronary arteries in patients with coronary allograft vasculopathy</td>
</tr>
<tr>
<td>P242</td>
<td>Hays, Allison</td>
<td>Regional coronary endothelial function is related to local coronary wall thickness in CAD patients using 3T MRI</td>
</tr>
</tbody>
</table>

Cost Effectiveness and Comparison to Other Modalities

<table>
<thead>
<tr>
<th>Paper</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P243</td>
<td>Koos, Ralf</td>
<td>Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography: implications for transcatheter aortic valve implantation</td>
</tr>
<tr>
<td>P244</td>
<td>Eberle, Holger</td>
<td>CMR ventriculometry for evaluation of ECG hypertrophy criteria in a preventive medicine population</td>
</tr>
</tbody>
</table>

EP and Interventional Applications

<table>
<thead>
<tr>
<th>Paper</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P245</td>
<td>Shmatukha, Andriy</td>
<td>Automatic segmentation of ablation lesions and termination of the image acquisition/analysis process</td>
</tr>
<tr>
<td>P246</td>
<td>Anreddy, Sandeep</td>
<td>Is Cardiovascular MRI equally effective as TEE in evaluation of left atrial appendage thrombus in patients with atrial fibrillation undergoing pulmonary vein isolation</td>
</tr>
<tr>
<td>P247</td>
<td>Ortiz Pérez, José</td>
<td>Myocardial scar sizing and characterization predicts ventricular arrhythmia in cardiac resynchronization therapy candidates</td>
</tr>
<tr>
<td>P248</td>
<td>Budge, Loren</td>
<td>A novel method for quantitating delayed enhancement of the left atrium</td>
</tr>
<tr>
<td>P249</td>
<td>Perazzolo Marra, Martina</td>
<td>Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy/dysplasia: comparison of three-dimensional electroanatomic voltage mapping and contrast-enhanced cardiac magnetic resonance</td>
</tr>
<tr>
<td>P250</td>
<td>Sharma, Nakul</td>
<td>Role of MRI in the diagnosis and prognosis of ventricular arrhythmias</td>
</tr>
<tr>
<td>P251</td>
<td>Karim, Rashed</td>
<td>An automatic segmentation for improved visualization of atrial ablation lesions using magnetic resonance imaging</td>
</tr>
<tr>
<td>P252</td>
<td>Muellerleile, Kai</td>
<td>Left atrial appendage flow velocities: assessment by velocity encoded magnetic resonance imaging</td>
</tr>
<tr>
<td>P253</td>
<td>Litt, Harold</td>
<td>Cardiac MRI is useful in ICD patients undergoing ablation for ventricular tachycardia</td>
</tr>
<tr>
<td>P254</td>
<td>Mahnkopf, Christian</td>
<td>Observation of renal function after multiple DE-MRI examinations in atrial fibrillation ablation patients without kidney diseases</td>
</tr>
<tr>
<td>P255</td>
<td>Sinha, Anil-Martin</td>
<td>Magnetic resonance imaging for optimized implantation and long-term monitoring of patients receiving a left atrial appendage occluder</td>
</tr>
<tr>
<td>P256</td>
<td>Oshinski, John</td>
<td>Presence of transmural posterolateral scar by LGE MRI is associated with non-response to CRT</td>
</tr>
<tr>
<td>P257</td>
<td>Muellerleile, Kai</td>
<td>Active left atrial emptying: assessment by cine and velocity encoded magnetic resonance imaging</td>
</tr>
<tr>
<td>P258</td>
<td>Wiethoff, Andrea</td>
<td>Assessment of the grey zone: a comparison of two methods in heart failure patients awaiting cardiac’s resynchronization therapy</td>
</tr>
<tr>
<td>P259</td>
<td>Almeida, Ana</td>
<td>Atrial fibrosis in atrial fibrillation pre-ablation assessed by CMR: impact in atrial size and function?</td>
</tr>
<tr>
<td>P260</td>
<td>Rona, Szilard</td>
<td>Anatomic assessment of pulmonary veins and left atrium - Comparison of magnetic resonance angiography with gadoteric acid, the blood pool contrast agent B22956/1 and a non-contrast enhanced imaging approach</td>
</tr>
</tbody>
</table>
POSTERS

P261	Knowles, Benjamin	LGE of left atrial ablation lesions: effect of imaging time on lesion visualization
P262	Peters, Dana	Respiratory bellows-gated left atrial late gadolinium enhancement
P263	Suever, Jonathan	User-dependence of myocardial infarct identification using semi-automated thresholding techniques: implications for CRT response predictions based on scar burden

Non-ischemic Heart Disease – CMP

P264	Withdrawn by Author	
P265	Rimoldi, Ornella	Impact of fibrosis and sympathetic activity on coronary flow reserve in hypertrophic cardiomyopathy
P266	Cocker, Myra	Evidence of an increased incidence of myocardial inflammation associated with reduced ventricular function in clinically suspected idiopathic dilated cardiomyopathy – a cardiovascular magnetic resonance study
P267	Gruber, Angela	MRI functional and tissue characterisation in patients with systemic lupus erythematosus
P268	Igual, Begona	Arrhythmogenic cardiomyopathy. Patterns of ventricular involvement using cardiac magnetic resonance
P269	Gutberlet, Matthias	Value of MRI derived parameters in the discrimination of familial left ventricular non-compaction (LVNC), DCM and HCM in comparison to healthy volunteers
P270	Gulati, Gurpreet	Cardiac magnetic resonance in tropical endomyocardial fibrosis
P271	Lydell, Carmen	Relationship of troponin T to cardiac MRI criteria for acute myocarditis
P272	Todiere, Giancarlo	Progression of myocardial fibrosis and functional clinical status in hypertrophic cardiomyopathy: a study with cardiac magnetic resonance
P273	Burger, Astrid	Assessment of right and left ventricular trabeculation in a reference collective: gender and age dependency of myocardial trabeculation
P274	Teraoka, Kunihiko	The Impact of mid-wall striate of LGE at interventricular septum to the beta-broker (Carvedilol) titrating to the target dose and the improvement of cardiac function with DCM
P275	Larghat, Abdulghani	Myocardial blood flow in patients with Type 2 diabetes ellitus and normal coronary angiography
P276	Tham, Edythe	Degree of diffuse fibrosis measured by MRI correlates with LV remodelling in childhood cancer survivors after anthracycline chemotherapy
P277	Pun, Shawn	A simple method for characterizing left ventricular remodeling by cardiovascular magnetic resonance
P278	Sado, Daniel	The distribution of hypertrophy in Anderson Fabry disease
P279	Shehata, Monda	Regional longitudinal bi-ventricular function in pulmonary hypertension: single heartbeat assessment of strain by fast-senc imaging
P280	Ernande, Laura	Cine displacement encoding imaging with Stimulated Echoes (cine-DENSE) confirms systolic myocardial dysfunction in asymptomatic patients with type 2 diabetes mellitus: comparison with MR-tagging
P281	Hamilton-Craig, Christian	Non-tropical endomyocardial fibrosis by cardiovascular magnetic resonance, demonstrating the value of CMR in restrictive cardiomyopathy
P282	Wansapura, Janaka	Serial assessment of myocardial T2 in Duchenne muscular dystrophy
P283	Kasai, Yufuko	Can late gadolinium enhancement on cardiovascular magnetic resonance describe cardiac involvement in patients with systemic sarcoidosis and/or suspect of cardiac involvement of sarcoidosis with cardiac symptoms?
P284	Williams, Katelyn	Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiac magnetic resonance imaging
P285	Fanaie, Fariba	Left atrial volume is associated with mid-wall fibrosis in dilated cardiomyopathy
SCMR/EuroCMR

POSTERS

P286 Lücke, Christian Frequency and variability of late gadolinium “mid-wall” enhancement (MLE) depending on observer experience, image quality and underlying disease

P287 Lanzillo, Chiara Incremental value of cardiac magnetic resonance in the characterization of patients referred for left ventricular non compaction evaluation

P288 Gulati, Gurpreet Cardiac magnetic resonance for evaluating early outcomes of stem cell therapy in non-ischemic dilated cardiomyopathy

P289 Fanaie, Fariba Association of LA volumes and mid-wall myocardial fibrosis in the dilated cardiomyopathy patients

P290 Brouwer, Wessel The effect of inhibition of the Na+/H+ exchanger on the development of hypertrophy in hypertrophic cardiomyopathy

P291 Syed, Mushabbar CMR of LV non-compaction cardiomyopathy: association of clinical presentation and prognosis with cardiac phenotype

P292 Khan, Razi Myocardial fibrosis is not associated with reduced quality of life in patients with dilated or hypertrophic cardiomyopathy

P293 Uellendahl, Marly Risk stratification by CMR in Chagas’ disease

P294 Kida, Keisuke Late gadolinium enhancement by cardiac magnetic resonance imaging predicts reverse remodeling in patients with non-ischemic cardiomyopathy receiving β-blocker therapy

P295 Ahmed, Waleed Prognostic value of different cardiac MRI parameters for the diagnosis of myocarditis

P296 Quarta, Giovanni The evolution and clinical importance of scar in hypertrophic cardiomyopathy – a 7 year CMR follow-up study

P297 Soma, Siva LGE in pulmonary hypertension predicts clinical events

P298 Almeida, Ana Myocardial fibrosis is a predictor of atrial fibrillation in dilated cardiomyopathy. Role of cardiovascular magnetic resonance

Non-ischemic Heart Disease – Infiltration and Iron Overload

P299 Meloni, Antonella Right ventricular volumes and function normalized to body surface area, age and sex in a large cohort of well-treated thalassemia major without myocardial iron overload

P300 Lydell, Carmen Right ventricle late gadolinium enhancement in cardiac sarcoidosis: a case series

P301 Mongeon, Francois-Pierre Novel quantification of extracellular expansion by cardiac magnetic resonance is a robust marker in diagnosis of cardiac amyloidosis

P302 Powell, Andrew Cardiac T2* measurements in patients with iron overload: a comparison of imaging parameters and analysis techniques

P303 Pepe, Alessia A T2* MRI prospective survey on heart iron in thalassemia major patients treated with sequential deferipron-desferrioxamine versus deferasirox

P304 Pepe, Alessia A T2* MRI prospective survey on heart iron in thalassemia major patients treated with sequential deferiprone-desferrioxamine versus deferipron and desferrioxamine in monotherapy

P305 Meloni, Antonella Left ventricular volumes, mass and function normalized to the body surface area, age and gender from CMR in a large cohort of well-treated thalassemia major patients without myocardial iron overload

P306 Medina-Zuluga, Hector Prevalence of fat by cardiac magnetic resonance imaging stratified by age in 940 patients referred for evaluation of arrhythmogenic (RV) dysplasia

P307 Bensalah, Mourad Ascending aorta dilatation common feature which correlate with left ventricular hypertrophy in Fabry disease

P308 Shah, Saurabh Inline myocardial t2* mapping with iterative robust fitting

P309 Meloni, Antonella Different patterns of myocardial iron overload by multislice T2* Cardiovascular MR as markers of risk for cardiac dysfunction in thalassemia major
<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P310</td>
<td>Viallon, Magalie</td>
<td>Impact of obesity on global and regional systolic function in children: a CMR study</td>
</tr>
<tr>
<td>P311</td>
<td>Steadman, Christopher</td>
<td>Comparison and reproducibility of standard and high temporal resolution myocardial tissue tagging in patients with severe aortic stenosis</td>
</tr>
<tr>
<td>P312</td>
<td>Fairbairn, Timothy</td>
<td>Measurement of myocardial blood flow response to the cold pressor test with myocardial perfusion CMR</td>
</tr>
<tr>
<td>P313</td>
<td>Thavendiranathan, Paaladinesh</td>
<td>Direct T2 quantification to detect myocardial edema in patients with myocarditis and Tako-Tsubo cardiomyopathy</td>
</tr>
<tr>
<td>P314</td>
<td>Hamilton-Craig, Christian</td>
<td>Late gadolinium enhancement does occur in the Tako-Tsubo cardiomyopathy - a quantitative cardiovascular magnetic resonance study</td>
</tr>
<tr>
<td>P315</td>
<td>van der Hulst, Anna</td>
<td>Validation and application of tissue-velocity magnetic resonance imaging for the assessment of regional diastolic velocities and diastolic performance of the right ventricle in corrected tetralogy of Fallot patients</td>
</tr>
<tr>
<td>P316</td>
<td>Polte, Christian</td>
<td>Wide limits of agreement between left ventricular stroke volume, right ventricular stroke volume and aortic and pulmonary forward flow</td>
</tr>
<tr>
<td>P317</td>
<td>Schelbert, Erik</td>
<td>Extracellular volume fraction measured by MOLLI: slow infusion versus bolus</td>
</tr>
<tr>
<td>P318</td>
<td>Yasuyuki, Kobayashi</td>
<td>Prevalence of left ventricular regional dysfunction differ in asymptomatic patients with systemic sclerosis compared to rheumatoid arthritis</td>
</tr>
<tr>
<td>P319</td>
<td>Marcus, J.</td>
<td>Interventricular asynchrony in chronic thrombo embolic pulmonary hypertension recovers after pulmonary endarterectomy: role of right ventricular wall stress</td>
</tr>
<tr>
<td>P320</td>
<td>Puntmann, Valentina</td>
<td>Unravelling the phenotype of cardiovascular inflammation with magnetic resonance imaging: detecting the change with anti-TNF treatment in patients with rheumatoid arthritis</td>
</tr>
<tr>
<td>P321</td>
<td>Almeida, Ana</td>
<td>Edema and myocardial necrosis evaluated by cardiac magnetic resonance in acute myocarditis. Relationship with biomarkers and ventricular function</td>
</tr>
<tr>
<td>P322</td>
<td>Vermes, Emmanuelle</td>
<td>Impact of the recent revision of ARVC task force criteria for CMR on criteria prevalence and diagnostic accuracy</td>
</tr>
<tr>
<td>P323</td>
<td>O h-Ici, Darach</td>
<td>Cardiac MRI findings in patients with myocarditis</td>
</tr>
<tr>
<td>P324</td>
<td>Skrok, Jan</td>
<td>First-pass contrast bolus hemodynamics contain information on right ventricular function, remodeling, and lung resistance in pulmonary arterial hypertension patients</td>
</tr>
<tr>
<td>P325</td>
<td>Machida, Haruhiko</td>
<td>Measuring effective orifice area of bileaflet mechanical valves in patients after aortic valve replacement using phase-contrast cine MR imaging</td>
</tr>
<tr>
<td>P326</td>
<td>Vincenti, Gabriella</td>
<td>Assessment of left ventricular apical rotation in obese by cardiovascular MR tagging</td>
</tr>
<tr>
<td>P327</td>
<td>Paterson, Ian</td>
<td>Triplanar estimation of left atrial volume</td>
</tr>
<tr>
<td>P328</td>
<td>Jonker, Jacqueline</td>
<td>Sustained cardiac remodeling after a short-term very low calorie diet in type 2 diabetes mellitus</td>
</tr>
<tr>
<td>P329</td>
<td>Skrok, Jan</td>
<td>Coronary flow reserve correlates with right ventricular dysfunction and predicts right heart failure in patients with pulmonary arterial hypertension</td>
</tr>
<tr>
<td>P330</td>
<td>Radunski, Ulf</td>
<td>Diastolic dysfunction in patients with preserved ejection fraction: identification by velocity encoded magnetic resonance imaging</td>
</tr>
<tr>
<td>P331</td>
<td>Velmurugan, Shanti</td>
<td>Left and right ventricular function in acutely presenting myocarditis: sparing of the right ventricle</td>
</tr>
<tr>
<td>P332</td>
<td>Bull, Sacha</td>
<td>CMR improves identification of aortic valve morphology in aortic stenosis</td>
</tr>
<tr>
<td>P333</td>
<td>Rovno, Hazel</td>
<td>MRI assessment of myocardial global function by tei index - a comparison to echocardiographic tei index</td>
</tr>
<tr>
<td>P334</td>
<td>Homaa, Ahmad</td>
<td>Left ventricular function, morphology, and myocardial tissue characterization in sickle cell disease: a multi-modality imaging study</td>
</tr>
<tr>
<td>P335</td>
<td>Egea-Serrano, Pilar</td>
<td>Usefulness of cardio-magnetic resonance in the diagnosis and evaluation of pulmonary hypertension</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Author</td>
<td>Abstract</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>P336</td>
<td>Han, Yuchi</td>
<td>Regional left ventricular deformation in primary mitral regurgitation</td>
</tr>
<tr>
<td>P337</td>
<td>Gilles, Raymond</td>
<td>Early detection of contractile dysfunction in GRMD dogs by post-processing of standard cine FLASH-MRI</td>
</tr>
<tr>
<td>P338</td>
<td>Leong, Darryl</td>
<td>Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography</td>
</tr>
<tr>
<td>P339</td>
<td>Ko, SungMin</td>
<td>Cardiac magnetic resonance imaging for comprehensive assessment of bicuspid aortic valve: comparison with transthoracic echocardiography, dual-source CT and operative findings</td>
</tr>
<tr>
<td>P340</td>
<td>Gradinger, Robert</td>
<td>Reproducibility of mild to moderate regurgitation of all heart valves by magnetic resonance imaging</td>
</tr>
<tr>
<td>P341</td>
<td>Usman, Asad</td>
<td>Cardiac magnetic resonance T2 mapping for monitoring acute cardiac transplant rejection</td>
</tr>
<tr>
<td>P342</td>
<td>Collins, Jeremy</td>
<td>Ultrafast Cine cardiac MRI in the assessment of left ventricular diastology</td>
</tr>
<tr>
<td>P343</td>
<td>Giovannetti, Giulio</td>
<td>Comparison between volume and surface coils for pig cardiac metabolism studies with hyperpolarized 13C MRS</td>
</tr>
<tr>
<td>P344</td>
<td>van Nierop, Bastiaan</td>
<td>Global left ventricular function in mice during the development of heart failure</td>
</tr>
<tr>
<td>P345</td>
<td>Zheng, Jie</td>
<td>Quantification of myocardial oxygen consumption with 18O-CMR: initial study</td>
</tr>
<tr>
<td>P346</td>
<td>Jacquier, Alexis</td>
<td>Gender differences in response to cold pressor test assessed with velocity-encoded cine-MR imaging of the coronary sinus</td>
</tr>
<tr>
<td>P347</td>
<td>West, Amy</td>
<td>Arterial spin labeling MRI to measure peak-exercise calf muscle perfusion reproducibly discriminates peripheral arterial disease from normal</td>
</tr>
<tr>
<td>P348</td>
<td>Desrois, Martine</td>
<td>Isoproterenol-induced changes in perfusion, function, energy metabolism and nitric oxide pathway: in vivo and ex vivo study in the rat heart</td>
</tr>
<tr>
<td>P349</td>
<td>Holloway, Cameron</td>
<td>Exercise training improves cardiac function, quality of life and exercise capacity in patients with dilated cardiomyopathy</td>
</tr>
<tr>
<td>P350</td>
<td>Clement-Guinaudeau, Stephanie</td>
<td>Age-related changes in tricuspid inflow: comparison between phase contrast MR imaging and Doppler echocardiography</td>
</tr>
<tr>
<td>P351</td>
<td>Janosevic, Danielle</td>
<td>Left ventricular concentric remodeling in normal aging is associated with decline of diastolic function assessed by multi-modality imaging</td>
</tr>
<tr>
<td>P352</td>
<td>Jonker, Jacqueline</td>
<td>Long-term diet-induced, tissue-specific changes in (non)adipose triglyceride stores in obese patients with type 2 diabetes mellitus</td>
</tr>
</tbody>
</table>

Physiology and Metabolism Including Spectroscopy

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>P353</td>
<td>Collins, David</td>
<td>MRI image sequencing of calcified myocardial masses; liquefaction necrosis of mitral annular calcification (LNMAC)</td>
</tr>
</tbody>
</table>

Technologist: Case Reports

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Author</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>P354</td>
<td>Wasielewski, Marie</td>
<td>Manual versus automatic inline ventricular function assessment using MRI</td>
</tr>
<tr>
<td>P355</td>
<td>Cheng, Joshua</td>
<td>Image based background magnetic field correction for aortic and pulmonary artery flow measurement using phase contrast</td>
</tr>
<tr>
<td>P356</td>
<td>Blanchard, Cédric</td>
<td>Automatic evaluation of the sinus of Valsalva from cine-MRI in patients with dilated aortic root</td>
</tr>
<tr>
<td>P357</td>
<td>Carroll, Cheryl</td>
<td>Patient and device related factors affecting artifact size and cardiac visualization when performing cardiac MRI in patients with implanted defibrillators</td>
</tr>
<tr>
<td>P358</td>
<td>Bryant, Jennifer</td>
<td>Comparison of manual and semi-automated analysis tools for quantifying left ventricular volumes and mass in children</td>
</tr>
</tbody>
</table>
P359 Bryant, Jennifer Cardiovascular magnetic resonance: interstudy reproducibility of measurements of left ventricular function in children

P360 Clarysse, Patrick Simulation based evaluation of cardiac motion estimation methods in tagged-MR image sequences

P361 Hwang, Min-Sig Non-invasive monitoring of changes in rabbit hearts with aging using MR microscopy

Vascular MRI

P362 Ibrahim, El-Sayed Pulmonary artery stiffness assessed by velocity-encoding MRI: comparison of techniques

P363 Dieringer, Matthias Influence of slice thickness on MR flow quantification in turbulent jets

P364 Wang, Jinnan iMSDE improves the fat suppression efficiency in vessel wall imaging

P365 van der Geest, Rob Automated quantification of arterial stenosis on CE-MRA by using a deformable vascular tubular model

P366 Xu, Yi A comparison of time-of-flight MR angiography, contrast-enhanced MR angiography and CT angiography to evaluate vessel area in a rabbit peripheral arterial disease model

P367 Fjord Pedersen, Steen Detection of edema in porcine carotid arteries using T2-weighted cardiovascular magnetic resonance

P368 Peel, Sarah Accelerated aortic plaque imaging using small field of view imaging and quadruple inversion recovery magnetization preparation

P369 McConnell, Michael Magnetic resonance and bioluminescence imaging of macrophage homing to experimental abdominal aortic aneurysms

P370 Uchida, Masaki Gd-based protein cage nanoparticles provide enhanced r1 relaxivity and detect experimental atherosclerosis

P371 Ioannis, Koktzoglou Carotid MR angiography using pulsed continuous arterial spin labeling

P372 Suzuki, Michimasa In vivo targeted molecular imaging for activated platelets by MRI using USPIO-fucoidan in rat abdominal aortic aneurysms model

P373 Kitagawa, Toshiro RGD targeting of human ferritin iron oxide nanoparticles can enhance in vivo carotid MRI of experimental atherosclerosis

P374 Xu, Jian Single breath-hold non-contrast thoracic MRA using highly-accelerated parallel imaging with a 32-element coil array

P375 Andia, Marcelo Modified quadruple inversion recovery prepulse for arterial spin labeling angiography without the need of subtraction

P376 Thrysøe, Samuel Plaque geometry: determinant for fibrous cap stress levels

P377 Gitsioudis, Gitsios IRON magnetic resonance: a robust technique for angiography providing high blood-to-tissue contrast within the clinically approved dosage of superparamagnetic nanoparticles

P378 Redheuil, Alban Relationship between proximal aortic stiffness assessed with CMR and left ventricular diastolic function in a bicentric asymptomatic population with preserved left ventricular ejection fraction

P379 Saam, Tobias Prevalence of complicated carotid atherosclerotic plaques ipsilateral to ischemic cryptogenic stroke using high-resolution MRI

P380 Steeden, Jennifer Rapid flow assessment of congenital heart disease using high spatio-temporal gated spiral phase-contrast MR

P381 Samyn, Margaret Cardiac magnetic resonance imaging can detect early vascular changes in children with type 1 diabetes (T1DM)

P382 West, Amy Changes in atherosclerotic plaque composition assessed by MRI in the superficial femoral artery with two years of lipid lowering therapy
POSTERS

P383 Edelman, Robert
Flow-encoded raster line scanning (FERAL) of the peripheral arteries

P384 Meierhofer, Christian
Visualization of flow in the ascending aorta: bicuspid aortic valves compared to tricuspid aortic valves

P385 Jiji, Ronny
Does measurement of exercise/rest calf muscle perfusion reserve with first-pass contrast-enhanced MRI in peripheral arterial disease perform better than exercise-only perfusion?

P386 Mortensen, Kristian
Isometric exercise in cardiac magnetic resonance imaging: an initial experience using fast imaging

P387 Kanski, Mikael
Pulmonary blood density quantified by CMR is reduced in newly diagnosed systemic sclerosis, consistent with pulmonary arteriolar proliferation

P388 De Lazzari, Manuel
Role of cardiac magnetic resonance in patients with chest pain and pulmonary aneurysm

P389 Nelson, Adam
Proximal aortic stiffness in the paediatric adolescent population

P391 Ward, Emily
Ankle-brachial index (ABI) and quiescent-interval single shot (QISS) MRA in peripheral arterial disease (PAD): comparison of diagnostic accuracy and need for additional imaging procedures

P392 Pitcher, Alex
Aortic dissection: visualisation of aortic blood flow and quantification of wall shear stress using time-resolved, 3D phase-contrast MRI

P393 Etesami, Maryam
Signal characteristic alterations of carotid artery dissection on high resolution magnetic resonance imaging: a follow-up study
AUTHOR INDEX

Agarwal, Harsh..026
Ahmed, Waleed ..P295
Aldrovandi, Anna..............................P076, P080
Almeida, Ana...P259, P298, P321
Alpendurada, FranciscoO104
Andia, Marcelo ...P375
Andrew, Jabbour ..O51, P189
Anredy, Sandeep ..P246
Ariff, Ben ...P090
Arujuna, Aruna ..M8
Ashrafpoor, GolmehrP081, P102
Auger, Daniel ...M3
Azene, Nicole ...P026
Bächler, Pablo ...P066
Bakhos, Lara..P044, P159
Banerjee, Rajarshi ..O82
Barac, Ana ..P093
Barbash, Israel ...P061
Barison, Andrea ...O76
Baron, Nicolas ...O106
Bellsham-Revell, HannahP186, P205, P212
Bensalah, Mourad ...P307
Berger, Alexander ...P099
Bernhardt, Peter ..P097, P144
Bertaso, Angela ..P117, P119
Bhatia, Puneet ...P221
Bhumireddy, Geetha ..O89
Biederman, Robert ...O96
Biris, Octavia ...P140
Blanchard, Cédric ...P356
Bollache, Emilie ...P032
Booker, O...O74
Breton, Elodie ...O107, P060
Brett, Nicholas ..O35
Brouwer, Wessel ..P290
Bryant, Jennifer ...P358, P359
Budge, Loren ..P248
Bull, Sacha ...P332
Burchell, Tom ...M11, P132
Burger, Astrid ..P273
Camarda, Joseph ...P219
Campbell, Adrienne ..O60, P056
Campbell, Michael ...P200
Cao, J ...P020
Carbone, Iacopo ...P121
Carneiro, Adriano ..O40
Carpenter, John-Paul ..O15
Carroll, Cheryl ...P357
Catalano, Oronzo ..P114
Cates, Joshua ..P057
Chaplin, Nayla ...P009
Chatterjee, Neil ...P237
Chen, Sylvia ..P195
Cheng, Joshua ..P355
Chiribiri, Amedeo ...O43, P041
Chow, Kelvin ..P031
Chuang, Michael ..P036
Clarysse, Patrick ...P360
Clement-Guinaudeau, StephanieP218, P350
Cocker, Myra ..P111, P266
Coelho-Filho, OtavioO2, O4, O87, P069, P180
Collins, David ...P353
Collins, Jeremy ...P231, P342
Couri, Daniel ..P120
Croisille, Pierre ...O9
Dabir, Darius ..P199
Danilov, Tatyana ...P094, P125
Darty, Stephen ..O38
Dawoud, Fady ..O92
De Lazzari, Manuel ..P388
de Ville de Goyet, Maelle ..P177
de Waha, Suzanne ..O1, P183
Defrance, Carine ...O30
Delattre, Benedicte ..P141, P164
Derbysire, John ...P023
Desrois, Martine ...P348
Dhakshinamurthy, Vijay ..P118
DiBella, Edward ...P162
Dieringer, Matthias ..P363
Doyle, Mark ...P169
Duckett, Simon ...P175
Dweck, Marc ..O37
Eberle, Holger ...P244
Edelman, Robert ...P383
Egea-Serrano, Pilar ..P335
Eitel, Ingo ..O86, P181
Elagha, Abdalla ..O88
Ennis, Daniel ...P067
Erica, Dal’Armellina ..P146
Eriksson, Jonatan ...O84
Ernande, Laura ..P280
Etesami, Maryam ..P393
Fabini, Kayleen ...P048
Fairbairn, Timothy ..P085, P312
Fakhr, Ashgar ..P137
Fanaie, Fariba ..P285, P289
Farazandeh, Mani ...P096
Farber, Nicholas ...P016
Ferreira, Vanessa ...P016
Festa, Pierluigi ..P220
Fieno, David ..P226
Finnemore, Anna ...P215
Fitz, David ...P208
Fjord Pedersen, Steen ..P367
Flett, Andrew ..O39
Flewitt, Jacqueline ...P053
Francois, Christopher ..P206
Fredriksson, Alexander ..O83
Freed, Benjamin ..O77
Frijia, Francesca ..M2
Fuernau, Georg ..O31
Gabbert, Dominik ...P223
AUTHOR INDEX

Gaborit, Bénédicte ... P071
Gardier, Stephany... P113
Gebker, Rolf .. P064
George, Ashvin .. P025
Gerber, Bernhard ... P090
Geyer, Leah ... P029
Ghimire, Gopal .. P138
Ghungre, Nilesh ... P057, P151
Gilles, Raymond ... P337
Giovannetti, Giulio ... P343
Gitsioudis, Gitsios ... O6, P377
Goetti, Robert .. P154
Gradinger, Robert .. P340
Groothuis, Jan ... P077
Grothoff, Matthias .. P116, P193
Grover, Suchi ... P075
Gruber, Angela .. P267
Grün, Stefan ... M7
Gulati, Gurpreet ... P270, P288
Gutberlet, Matthias ... P269
Hamilton-Craig, Christian ... P053, P203, P281, P314
Han, Yuchi ... P336
Hart, Christopher ... P210
Hays, Allison ... P242
Hegde, Vinayak ... M12
Heiberg, Einar ... P047
Henningsson, Markus .. P229
Herzka, Daniel .. P018
Heydari, Bobby ... O65
Holloway, Cameron .. P349
Holmström, Mia ... M5
Homaa, Ahmad ... P334
Hong, Yoo Jin ... P022
Hor, Kan ... P017
Hoyer, Andrew ... P207
Hsu, Li-Yueh ... P078
Huang, Shuning ... P23, P28
Hussain, Shazia .. P010
Hussain, Tariq ... P001, P235
Hwang, Min-Sig .. M1, P361
Ibrahim, El-Sayed .. P015, P362
Igual, Begona ... P109, P268
Ioannis, Koktzoglou ... P371
Ishida, Masaki ... P230, P233
Izquierdo, Maria ... P115
Jaarsma, Caroline ... P075
Jacquier, Alexis .. O36, P346
James, Susan ... P040
Janardhanan, Rajesh ... O81
Janojevic, Danielle .. P351
Janista, Elizabeth .. P002
Ji, Ronny ... P385
Jimenez-Juan, Laura ... O20
Jogiya, Roy ... P012
Jolly, Marie-Pierre .. P034
Jolly, Umjeet ... P166
Jones, Alexander .. P068
Jonker, Jacqueline .. P328, P352
Joshi, Subodh .. P032
Kachenoura, Nadjia .. P008
Kadiyala, Madhavi .. P014
Kali, Avinash ... P112
Kalisz, Kevin ... P173
Kancharia, Krishna .. P184
Kanski, Mikael ... P387
Karamitsos, Theodoros .. P105, P126
Karim, Rashid .. P251
Kasai, Yufuko ... P283
Kecker, Liane ... P122, P134
Kelle, Sebastian .. P165
Keilman, Peter ... P039
Khambekar, S ... P227
Khan, Razi ... P292
Kho, Jeffrey ... P079
Kida, Keisuke ... P294
Kim, Daniel ... P025
Kim, Han ... O67
Kino, Aya ... P054
Kitagawa, Toshio ... P373
Klein, Christoph ... P100
Klem, Igor ... O100
Knowles, Benjamin ... P261
Ko, SungMin ... P339
Kociemba, Anna ... P098
Kodali, Sobhan ... P178
Kodali, Visali ... O97
Koons, Ralf ... P243
Krishnamurthy, Ramkumar ... P028
Kroner, Eleanore ... O13
Kwon, Deboarah ... O91
Kyavar, Majid ... P216
Laissy, Jean-Pierre ... O46
Langhans, Birgit ... P106
Lanzillo, Chiara .. P287
Larghat, Abdulghanil .. P275
Lefort, Muriel ... P046
Leong, Darryl ... P338
Lewandowski, Adam .. O95
Lim, Alicia ... P188
Litt, Harold ... P253
Liu, Chia-Ying ... P073
Liu, Songtao ... P010, P051
Lohezic, Maelene .. P011
Lamborg, Jacob ... O112
Lu, Yingli ... P004
Lücke, Christian ... P286
Luijtenburg, Saskia ... P194
Lund, Gunnar ... P160
Lurz, Philipp ... O3
Luu, Judy ... P092
Lydell, Carmen .. P271, P300
Ma, Heng ... P078
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machida, Haruhiko</td>
<td>P325</td>
</tr>
<tr>
<td>Madriago, Erin</td>
<td>P209</td>
</tr>
<tr>
<td>Mahnkopf, Christian</td>
<td>P254</td>
</tr>
<tr>
<td>Malek, Lukasz</td>
<td>P155</td>
</tr>
<tr>
<td>Mamone, Michael</td>
<td>P088</td>
</tr>
<tr>
<td>Mandy, Damien</td>
<td>P150</td>
</tr>
<tr>
<td>Marcus, J.</td>
<td>P319</td>
</tr>
<tr>
<td>Maredia, Neil</td>
<td>P029, P082</td>
</tr>
<tr>
<td>Maret, Eva</td>
<td>P123</td>
</tr>
<tr>
<td>Masci, Pier Giorgio</td>
<td>P084, P135</td>
</tr>
<tr>
<td>Masip, Lambert</td>
<td>P139</td>
</tr>
<tr>
<td>Mather, Adam</td>
<td>M9</td>
</tr>
<tr>
<td>McAlindon, Elisa</td>
<td>P174</td>
</tr>
<tr>
<td>McConnell, Michael</td>
<td>P369</td>
</tr>
<tr>
<td>Medina-Zuluga, Hector</td>
<td>P306</td>
</tr>
<tr>
<td>Medrano-Gracia, Pau</td>
<td>O72</td>
</tr>
<tr>
<td>Meierhofer, Christian</td>
<td>P384</td>
</tr>
<tr>
<td>Mekaouhi, Chouki</td>
<td>P044, P019</td>
</tr>
<tr>
<td>Meloni, Antonella</td>
<td>P299, P305, P309</td>
</tr>
<tr>
<td>Messroghli, Daniel</td>
<td>P024</td>
</tr>
<tr>
<td>Mikami, Yoko</td>
<td>P136, P161</td>
</tr>
<tr>
<td>Misra, Nilanjana</td>
<td>P213</td>
</tr>
<tr>
<td>Moghadam, Abbas</td>
<td>O27</td>
</tr>
<tr>
<td>Mongeon, Francois-Pierre</td>
<td>O109, P301</td>
</tr>
<tr>
<td>Mortensen, Kristian</td>
<td>P386</td>
</tr>
<tr>
<td>Morton, Geraint</td>
<td>P083, P089</td>
</tr>
<tr>
<td>Moussaux, Etie</td>
<td>P013</td>
</tr>
<tr>
<td>Muellerleite, Kai</td>
<td>P176, P252, P257</td>
</tr>
<tr>
<td>Muzzarelli, Stefano</td>
<td>P197</td>
</tr>
<tr>
<td>Myerson, Saul</td>
<td>O99</td>
</tr>
<tr>
<td>Neizel, Mirja</td>
<td>O58</td>
</tr>
<tr>
<td>Nelson, Adam</td>
<td>P389</td>
</tr>
<tr>
<td>Nordmeyer, Sarah</td>
<td>P214, P225</td>
</tr>
<tr>
<td>O h-Ici, Darach</td>
<td>O70, P087, P323</td>
</tr>
<tr>
<td>Olimulder, Marlon</td>
<td>O69, P145</td>
</tr>
<tr>
<td>Oliveira, Amario</td>
<td>P157</td>
</tr>
<tr>
<td>Onishi, Takayuki</td>
<td>P182</td>
</tr>
<tr>
<td>Ortiz Perez, Jose</td>
<td>P142, P247</td>
</tr>
<tr>
<td>Oshinski, John</td>
<td>P256</td>
</tr>
<tr>
<td>Otazo, Ricardo</td>
<td>O98</td>
</tr>
<tr>
<td>Paelinck, Bernard</td>
<td>O34</td>
</tr>
<tr>
<td>Patel, Amit</td>
<td>P091</td>
</tr>
<tr>
<td>Paterson, Ian</td>
<td>P327</td>
</tr>
<tr>
<td>Paul, Gideon</td>
<td>M6</td>
</tr>
<tr>
<td>Pednekar, Amol</td>
<td>P037</td>
</tr>
<tr>
<td>Peel, Sarah</td>
<td>P241, P368</td>
</tr>
<tr>
<td>Pepe, Alessia</td>
<td>O18, O21, P303, P304</td>
</tr>
<tr>
<td>Perazzolo Marra, Martina</td>
<td>P249</td>
</tr>
<tr>
<td>Perez David, Esther</td>
<td>P156</td>
</tr>
<tr>
<td>Peters, Dana</td>
<td>P163, P262</td>
</tr>
<tr>
<td>Piechnik, Stefan</td>
<td>P043</td>
</tr>
<tr>
<td>Pitcher, Alex</td>
<td>P201, P392</td>
</tr>
<tr>
<td>Polte, Christian</td>
<td>P316</td>
</tr>
<tr>
<td>Porto, Italo</td>
<td>P240</td>
</tr>
<tr>
<td>Posina, Kanna</td>
<td>P005</td>
</tr>
<tr>
<td>Powell, Andrew</td>
<td>P302</td>
</tr>
<tr>
<td>Prakash, Ashwin</td>
<td>P196</td>
</tr>
<tr>
<td>Pun, Shawn</td>
<td>P277</td>
</tr>
<tr>
<td>Puntmann, Valentina</td>
<td>P130, P320</td>
</tr>
<tr>
<td>Quarta, Giovanni</td>
<td>P296</td>
</tr>
<tr>
<td>Quick, Harald</td>
<td>O54</td>
</tr>
<tr>
<td>Radunski, Ulf</td>
<td>P330</td>
</tr>
<tr>
<td>Redheuil, Alban</td>
<td>P027, P378</td>
</tr>
<tr>
<td>Rehwald, Wolfgang</td>
<td>O14</td>
</tr>
<tr>
<td>Richardson, James</td>
<td>P104, P107</td>
</tr>
<tr>
<td>Rickers, Carsten</td>
<td>P198, P217</td>
</tr>
<tr>
<td>Riesenkampff, Eugenie</td>
<td>P191</td>
</tr>
<tr>
<td>Rimoldi, Ornella</td>
<td>P265</td>
</tr>
<tr>
<td>Rinkevich-Shop, Shunit</td>
<td>O49</td>
</tr>
<tr>
<td>Robbers, Lourens</td>
<td>O93</td>
</tr>
<tr>
<td>Rowe, Christopher</td>
<td>P035</td>
</tr>
<tr>
<td>Rona, Sziland</td>
<td>P260</td>
</tr>
<tr>
<td>Rossi, Alexia</td>
<td>P211</td>
</tr>
<tr>
<td>Rovno, Hazel</td>
<td>P333</td>
</tr>
<tr>
<td>Rubio-Guivernau, Jose</td>
<td>O56</td>
</tr>
<tr>
<td>Rundell, Veronica</td>
<td>P111</td>
</tr>
<tr>
<td>Saam, Tobias</td>
<td>P379</td>
</tr>
<tr>
<td>Sado, Daniel</td>
<td>O108, P278</td>
</tr>
<tr>
<td>Salerno, Michael</td>
<td>P017</td>
</tr>
<tr>
<td>Samyn, Margaret</td>
<td>P381</td>
</tr>
<tr>
<td>Sanz, Javier</td>
<td>O73</td>
</tr>
<tr>
<td>Sarikouch, Samir</td>
<td>P222</td>
</tr>
<tr>
<td>Schelbert, Erik</td>
<td>P317</td>
</tr>
<tr>
<td>Schmidt, Andre</td>
<td>P167</td>
</tr>
<tr>
<td>Schneider, Michael</td>
<td>P234</td>
</tr>
<tr>
<td>Schroeder, Marie</td>
<td>O79</td>
</tr>
<tr>
<td>Schuler, Pia</td>
<td>P185</td>
</tr>
<tr>
<td>Schuster, Andreas</td>
<td>P055, P153, P158</td>
</tr>
<tr>
<td>Scott, Andrew</td>
<td>O11, O47, P239</td>
</tr>
<tr>
<td>Secinaro, Aurelio</td>
<td>P192</td>
</tr>
<tr>
<td>Shafi, Nabil</td>
<td>P131</td>
</tr>
<tr>
<td>Shah, Saurabh</td>
<td>P308</td>
</tr>
<tr>
<td>Shanhag, Sujata</td>
<td>O12</td>
</tr>
<tr>
<td>Shariat, Masoud</td>
<td>P202</td>
</tr>
<tr>
<td>Sharma, Nakul</td>
<td>P250</td>
</tr>
<tr>
<td>Shehata, Monda</td>
<td>P279</td>
</tr>
<tr>
<td>Shmatukha, Andriy</td>
<td>P245</td>
</tr>
<tr>
<td>Simprini, Lauren</td>
<td>P172</td>
</tr>
<tr>
<td>Sinha, Anil-Martin</td>
<td>P255</td>
</tr>
<tr>
<td>Skrok, Jan</td>
<td>P324, P329</td>
</tr>
<tr>
<td>Smith, Travis</td>
<td>P236</td>
</tr>
<tr>
<td>Smulders, Martijn</td>
<td>O68</td>
</tr>
<tr>
<td>Soenksen, Luis</td>
<td>P171</td>
</tr>
<tr>
<td>Soma, Siva</td>
<td>P297</td>
</tr>
<tr>
<td>Song, Ting</td>
<td>P050</td>
</tr>
<tr>
<td>Speiser, Uwe</td>
<td>P033, P074</td>
</tr>
<tr>
<td>Springeling, Tirza</td>
<td>P108</td>
</tr>
<tr>
<td>Steadman, Christopher</td>
<td>O5, O41, P311</td>
</tr>
<tr>
<td>Steeden, Jennifer</td>
<td>P380</td>
</tr>
<tr>
<td>Steen, Henning</td>
<td>P064, P065</td>
</tr>
<tr>
<td>Strach, Katharina</td>
<td>P101</td>
</tr>
<tr>
<td>Suever, Jonathan</td>
<td>P232, P263</td>
</tr>
</tbody>
</table>
FACULTY DISCLOSURES

Abdel-Aty, Hassan: Financial Disclosure: Nothing to disclose
Aletras, Anthony: Financial Disclosure: Nothing to disclose
Anderson, Lisa: Financial Disclosure: Nothing to disclose
Arai, Andrew: Financial Disclosure: Grant/Research Support: Siemens
Arheden, Hakan: Financial Disclosure: Nothing to disclose
Ashworth, Michael: Financial Disclosure: Nothing to disclose
Axel, Leon: Financial Disclosure: Nothing to disclose
Babu-Narayan, Sonya: Financial Disclosure: Nothing to disclose
Bandettini, Patricia: Financial Disclosure: Nothing to disclose
Barkhausen, Jörg: Financial Disclosure: Nothing to disclose
Bax, J.J.: Financial Disclosure: Nothing to disclose
Beibaum, Philip: Financial Disclosure: Nothing to disclose
Bezerra, Hiram: Financial Disclosure: Nothing to disclose
Bhat, Himanshu: Financial Disclosure: Employee Siemens Medical Solutions USA Inc.
Biederman, Robert: Financial Disclosure: Speaker’s Bureau: Merck, Schering Plough, Gilead, NHLBI, AHA Grant
Bluemke, David: Financial Disclosure: Nothing to disclose
Bonhoeffer, Philipp: Financial Disclosure: Metronic NuMed
Botnar, Rene: Financial Disclosure: Nothing to disclose
Bremerich, Jens: Financial Disclosure: Nothing to disclose
Bruder, Oliver: Financial Disclosure: Nothing to disclose
Brummer, Marijn: Financial Disclosure: Nothing to disclose
Bucciarelli-Ducci, Chiara: Financial Disclosure: Nothing to disclose
Budge, Loren: Financial Disclosure: Nothing to disclose
Burchell, Thomas R.: Financial Disclosure: Nothing to disclose
Cai, Jianming: Financial Disclosure: Nothing to disclose
Carpenter, John-Paul: Financial Disclosure: Nothing to disclose
Chen, Marcus: Financial Disclosure: Nothing to disclose
Choudhury, Robin: Financial Disclosure: Stock Shareholder: Oxford Contrast Molecular Diagnostic
Chung, Yu-Cho: Financial Disclosure: Employee Siemens Healthcare, USA
Chung, Taylor: Financial Disclosure: Nothing to disclose
Coelho-Filho, Otavio: Financial Disclosure: Nothing to disclose
Connelly, Kim: Financial Disclosure: Nothing to disclose
Cook, Stephen: Financial Disclosure: Nothing to disclose
Coulden, Richard: Financial Disclosure: Nothing to disclose
Croisille, Pierre: Financial Disclosure: Nothing to disclose
Cunningham, Charles: Financial Disclosure: Grant/Research Support: GE Healthcare
Firmin, David: Financial Disclosure: Grant/Research: Siemens
De Lara Fernandes, Juliano: Financial Disclosure: Nothing to disclose
de Roos, Albert: Financial Disclosure: Nothing to disclose
DeRidder, Filip: Financial Disclosure: Nothing to disclose
Desai, Milind: Financial Disclosure: Nothing to disclose
Dharmakumar, Rohan: Financial Disclosure: Nothing to disclose
DiBella, Edward: Financial Disclosure: Grant/Research Support: Astellas, Siemens
Dorfman, Adam: Financial Disclosure: Nothing to disclose
Drivas, Peter: Financial Disclosure: Nothing to disclose
Ebbers, Tino: Financial Disclosure: Nothing to disclose
Eder, Susan: Financial Disclosure: Nothing to disclose
Ennis, Daniel: Financial Disclosure: Nothing to disclose
Epstein, Frederick: Financial Disclosure: Grant/Research Support: Siemens Healthcare
Farzaneh-Far, Afshin: Financial Disclosure: Nothing to disclose
Fayad, Zahi: Financial Disclosure: Nothing to disclose
Finn, Paul: Financial Disclosure: Grant/Research Support: Siemens, Medical Solution, Bracco Diagnostic Inc.
Flamm, Scott: Financial Disclosure: Nothing to disclose
Fletcher, Alison: Financial Disclosure: Nothing to disclose
Flett, Andrew: Financial Disclosure: Nothing to disclose
Francis, Jane: Financial Disclosure: Nothing to disclose
Fratz, Sohrab: Financial Disclosure: Nothing to disclose
French, Brent: Financial Disclosure: Nothing to disclose
Friedrich, Matthias: Financial Disclosure: Nothing to disclose
Garg, Ruchira: Financial Disclosure: Nothing to disclose
Gatehouse, Peter David: Financial Disclosure: Others: Siemens, Departmental Research Agreement
Gentry, Ralph: Financial Disclosure: Nothing to disclose
Gerber, Bernhard: Financial Disclosure: Nothing to disclose
Germain, Philippe: Financial Disclosure: Nothing to disclose
Geva, Tal: Financial Disclosure: Nothing to disclose
Goddu, Beth: Financial Disclosure: Nothing to disclose
Gotte, Marco: Financial Disclosure: Nothing to disclose
Greenwood, Jean Pierre: Financial Disclosure: Nothing to disclose
Greil, Gerald F.: Financial Disclosure: Nothing to disclose
Grosse-Wortmann, Lars: Financial Disclosure: Nothing to disclose
Günther, Matthias: Financial Disclosure: Stock shareholder mediri GmbH
Gutberlet, Matthias: Financial Disclosure: Nothing to disclose
Hachamovitch, Rory: Financial Disclosure: Nothing to disclose
Han, Yuchi: Financial Disclosure: Nothing to disclose
Hansen, Michael: Financial Disclosure: Nothing to disclose
Hardy, Christopher: Financial Disclosure: Employee GE Global Research
Harris, Matthew: Financial Disclosure: Nothing to disclose
Hegde, Vinayak: Financial Disclosure: Nothing to disclose
Helbing, Willem A: Financial Disclosure: Nothing to disclose
Herr, Anja: Financial Disclosure: Nothing to disclose
Higgins, Charles: Financial Disclosure: Nothing to disclose
Hope, Michael: Financial Disclosure: Nothing to disclose
Horvath, Keith: Financial Disclosure: Grant/Research Support: GE Healthcare
Jacquier, Alexis: Financial Disclosure: Nothing to disclose
Jerosch-Herold, Michael: Financial Disclosure: Nothing to disclose
Johnson, Tiffanie: Financial Disclosure: Nothing to disclose
Judd, Robert: Financial Disclosure: Nothing to disclose
Jung, Bernd: Financial Disclosure: Nothing to disclose
Karamitsos, Theodoros: Financial Disclosure: Nothing to disclose
Keilberg, Petra: Financial Disclosure: Nothing to disclose
Keller, Peter: Financial Disclosure: Nothing to disclose
Kim, Daniel: Financial Disclosure: Nothing to disclose
Kim, Raymond J.: Financial Disclosure: Other: Educational Grant, Siemens, Co-Founder, HeartIT, LLC
Kleindienst, Denise: Financial Disclosure: Nothing to disclose
Kober, Frank: Financial Disclosure: Nothing to disclose
Kozerke, Sebastian: Financial Disclosure: Nothing to disclose
Kraitchman, Dara: Financial Disclosure: Consultant: Surefire Medical, Inc., Grant/Research Support: Siemens AG
Kramer, Christopher: Financial Disclosure: Grant/Research Support: Siemens Healthcare, Astellas
Kroft, Lucia: Financial Disclosure: Grant/Research Support: PI for BayerSchering Pharma, Siemens and Philips
Kühne, Titus: Financial Disclosure: Nothing to disclose
Kwong, Raymond: Financial Disclosure: Nothing to disclose
Lamb, Hildo: Financial Disclosure: Nothing to disclose
Lanza, Gregory: Financial Disclosure: Grant/Research Support: NIH Funding; Stock Shareholder: <5% common, neither self managed nor saleable; Others: Equipment support: Philips Healthcare
Laub, Gerhard: Financial Disclosure: Employee Siemens Medical Solutions
Lederman, Robert: Financial Disclosure: Nothing to disclose
Lerakis, Stamatis: Financial Disclosure: Nothing to disclose
Leung, Steve: Financial Disclosure: Nothing to disclose
Li, Debiao: Financial Disclosure: Nothing to disclose
Lima, Joao: Financial Disclosure: Grant/Research Support: Toshiba, Astellas Grant Support Only
Litt, Harold: Financial Disclosure: Nothing to disclose
Lurz, Philipp: Full-time/part time Employee: Siemens Corporate Research
Lustig, Michael: Financial Disclosure: Grant/Research Support: GE Healthcare
Mahrholdt, Heiko: Financial Disclosure: Nothing to disclose
Manka, Robert: Financial Disclosure: Nothing to disclose
Mansi, Tommaso: Financial Disclosure: Nothing to disclose
Markl, Michael: Financial Disclosure: Nothing to disclose
Martin, Edward: Financial Disclosure: Consultant: Siemens, Astellas, Cormatrix; Speaker’s Bureau: Lantheus Medical Imaging; Grant / Research Support: Siemens; Honoraria; Lantheus Medical Imaging
McConnell, Michael: Financial Disclosure: Grant / Research Support: GE Healthcare
McCrohon, Jane: Financial Disclosure: Nothing to disclose
Meave, Aloha: Financial Disclosure: Nothing to disclose
Messroghli, Daniel: Financial Disclosure: Nothing to disclose
Meyer, Craig: Financial Disclosure: Nothing to disclose
Mohaiddin, Raad: Financial Disclosure: Nothing to disclose
Moon, James: Financial Disclosure: Grant / Research Support: PI on an investigator led research project measuring interstitial expansion funded by the company GSK
Mordini, Federico: Financial Disclosure: Nothing to disclose
Morton, Geraint: Financial Disclosure: Nothing to disclose
Mousseaux, Elie: Financial Disclosure: Nothing to disclose
Muthurangu, Vivek: Financial Disclosure: Nothing to disclose
Myerson, Saul: Financial Disclosure: Nothing to disclose
Nagel, Eike: Financial Disclosure: Nothing to disclose
Nagel, Scott: Financial Disclosure: Nothing to disclose
Nayak, Krishna: Financial Disclosure: Grant / Research Support: GE
Neubauer, Stefan: Financial Disclosure: Nothing to disclose
Nezafat, Reza: Financial Disclosure: Nothing to disclose
Niendorf, Thoralf: Financial Disclosure: Nothing to disclose
Norman, Financial Disclosure: Nothing to disclose: Nothing to disclose
Orдовas, Karen: Financial Disclosure: Nothing to disclose
Oshinski, John: Financial Disclosure: Grant / Research Support: Siemens Medical, Consultant: Cardiogenesis
Parks, James: Financial Disclosure: Nothing to disclose
Pedrotti, Patrizia: Financial Disclosure: Nothing to disclose
Pennell, Dudley: Financial Disclosure: Others: Editor of JCMR
Pereyra, Mercedes: Financial Disclosure: Consultant
Peters, Dana: Financial Disclosure: Nothing to disclose
Petersen, Steffen: Financial Disclosure: Nothing to disclose
Pettigrew, Roderic: Financial Disclosure: Nothing to disclose
Plein, Sven: Financial Disclosure: Grant / Research Support: Philips Healthcare
Pohost, Gerald: Financial Disclosure: Grant / Research Support: GE
Powell, Andrew: Financial Disclosure: Nothing to disclose
Prakash, Ashwin: Financial Disclosure: Nothing to disclose
Prasad, Sanjay: Financial Disclosure: Nothing to disclose
Prince, Martin: Financial Disclosure: Siemens, GE, Philips, Hitachi, Nemato, Mallinkrodt, Bracco, Bayer Pharmaceuticals, Epix, Lantheus, Toshiba and TopSpins
Puchalski, Michael: Financial Disclosure: Nothing to disclose
Rademakers, Frank E.: Financial Disclosure: Nothing to disclose
Rathi, Vikas K.: Financial Disclosure: Nothing to disclose
Razavi, Reza: Financial Disclosure: Grant/Research Support: Philips Healthcare
Redheuil, Alban: Financial Disclosure: Nothing to disclose
Ridgway, John: Financial Disclosure: Nothing to disclose
Rochitte, Carlos: Financial Disclosure: Nothing to disclose
Roest, Arno: Financial Disclosure: Nothing to disclose
Saam, Tobias: Financial Disclosure: Grant/Research Support: Bayer Schering Pharma, Diamed Medizintechnik
Saikus, Christina: Financial Disclosure: Nothing to disclose
Sakuma, Hajime: Financial Disclosure: Nothing to disclose
Salerno, Michael: Financial Disclosure: Nothing to disclose
Sarikouch, Samir: Financial Disclosure: Nothing to disclose
Schneider, Juergen: Financial Disclosure: Consultant: Agilent
Schuster, Andreas: Financial Disclosure: Nothing to disclose
Schwittler, Jürg: Financial Disclosure: Nothing to disclose
Scott, Greig: Financial Disclosure: Grant/Research Support: GE Healthcare supports MRSL
Sechtem, Udo: Financial Disclosure: Nothing to disclose
Sekhri, Neha: Financial Disclosure: Nothing to disclose
Selvanayagam, Joseph: Financial Disclosure: Nothing to disclose
Sermesant, Maxime: Financial Disclosure: Nothing to disclose
Shambrook, James: Financial Disclosure: Nothing to disclose
Shanbhag, Sujata: Financial Disclosure: Grant/Research Support: Siemens
Sicari, Rosa: Financial Disclosure: Nothing to disclose
Siebelink, Hans-Marc: Financial Disclosure: Nothing to disclose
Silberbach, Michael: Financial Disclosure: Nothing to disclose
Simonetti, Orlando: Financial Disclosure: Consultant: Phi Health; Grant / Research Support: Siemens Medical Solutions; Stock Shareholder (self managed): EXCMR, Ltd.
Sinkus, Ralph: Financial Disclosure: Nothing to disclose
Sodickson, Daniel: Financial Disclosure: Nothing to disclose
Strijikers, Gustav: Financial Disclosure: Nothing to disclose
Tandri, Harikrishna: Financial Disclosure: Nothing to disclose
Thiele, Holger: Financial Disclosure: Nothing to disclose
Thompson, Richard: Financial Disclosure: Nothing to disclose
Tyler, Damian: Financial Disclosure: Nothing to disclose
Valente, Anne Marie: Financial Disclosure: Nothing to disclose
Valsangiacomo Buechel, Emanuela: Financial Disclosure: Nothing to disclose
Van Elderen, Saskia: Financial Disclosure: Nothing to disclose
Van Rossum, Albert: Financial Disclosure: Nothing to disclose
Vergara, Gaston R.: Financial Disclosure: Nothing to disclose
Vincent, Pam: Financial Disclosure: Nothing to disclose
FACULTY DISCLOSURES

Vuissouz, Pierre-Andre: Financial Disclosure: Nothing to disclose

Wage, Ricardo: Financial Disclosure: Nothing to disclose

Watkins, Stuart: Financial Disclosure: Nothing to disclose

Weiss, Robert: Financial Disclosure: Nothing to disclose

West, Amy Marisa: Financial Disclosure: Nothing to disclose

Westwood, Mark: Financial Disclosure: Honoraria: Guerbet Pharmaceuticals

Whitehead, Kevin: Financial Disclosure: Nothing to disclose

Wilson, Joel: Financial Disclosure: Nothing to disclose

Wright, Graham: Financial Disclosure: Grant/Research Support: GE Healthcare, Imricor

Wu, Katherine: Financial Disclosure: Nothing to disclose

Yilmaz, Ali: Financial Disclosure: Nothing to disclose

Yoganathan, Ajit: Financial Disclosure: Nothing to disclose

Yoo, Shi-Joon: Financial Disclosure: Nothing to disclose

Younger, John: Financial Disclosure: Nothing to disclose

Yuan, Chun: Financial Disclosure: Grant/Research Support: VP Diagnostic, Philips (PI)

Zhang, Jie: Financial Disclosure: Nothing to disclose
CMRtools from CVIS is a versatile software package that allows interactive viewing and functional analysis of CMR images. Built on years of clinical research in CMR, it allows state-of-the-art image analysis, quantification and visualization on a standard PC.

Circle Cardiovascular Imaging Inc. is a Calgary based company that develops analytical software for the cardiac imaging community. Circle’s product suite, c42, is engineered for use in cardiac imaging. c42 is developed by physicians for physicians, and thereby combines an intuitive user interface and analysis tool set, and has been designed specifically to facilitate efficient quantitative evaluation of cardiac imaging studies. The first software in the product suite, cmr42 is designed for use in Cardiovascular MR.

Diagnosoft develops and markets state-of-the-art cardiac quantification software solutions and clinical reporting for hospitals, research and teaching institutions, medical imaging centers and private practices. Our solutions analyze cardiac MR images for global and regional function. Our flagship product, Diagnosoft HARP (FDA cleared), enables regional function quantification of the heart based on tagged cardiac MR images. Diagnosoft is a privately held company based in Cary, North Carolina, USA.

The ESC Working Group (WG) on Cardiovascular Magnetic Resonance (CMR) aims at being the representative trans-national scientific organisation for physicians, scientists, and technologists who work in the field of CMR. Our mission is to stimulate and disseminate the knowledge and the use of CMR through education, quality control, research, and training. Do not miss our state-of-the-art annual congress and educational courses. Membership is free and unlimited.
Imricor is developing innovative MRI compatible electro-physiology (EP) technology, including the VisionTM ablation catheter and the BridgeTM MR EP Recording System, intended for the treatment of patients with cardiac arrhythmias. Headquartered in Minneapolis, USA, Imricor’s management team includes leading experts in the development of MRI compatible and EP medical devices.

JCMR, the official journal of the Society for Cardiovascular Magnetic Resonance, is an open access, online journal that publishes articles on all aspects of basic and clinical research on the design, development, manufacture, and evaluation of magnetic resonance methods applied to the CMR system. The only journal devoted exclusively to CMR, JCMR aims to provide an international forum for communicating the latest findings and reviews on the burgeoning field of CMR imaging and spectroscopy.

Medis is a leading provider of software solutions for the quantification of cardiovascular MR images. At SCMR/EuroCMR 2011, you can learn more about the spectacular new version of Medis QMass® MR, which is powered by Visia™ Enterprise. High-quality quantification is now complemented with smooth DICOM connectivity, versatile reviewing, and personal worklists that you can access whenever and wherever you want. Visit Medis at booth 6 for more information or a demo.

Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified health and well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of “sense and simplicity”. The company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare.
PIE MEDICAL IMAGING
solutions in cardiovascular analysis
Becanusstraat 13D
6216 BX Maastricht
The Netherlands
Phone: +31 - 43 3281328
Fax: +31 - 43 3281329

Pie Medical Imaging offers quantitative cardiovascular analysis software for MR images. The CAAS MRV software allows for Functional, Viability and First Pass Perfusion analysis of the left and right ventricles. A version especially designed for small animal research, called CAAS MRV FARM, also is available. Another solution in the MRI product range is CAAS MR Flow, to quantify flow and velocities in phase contrast MR images.

SIEMENS AG
Healthcare Sector
Henkestr. 127, D-91052 Erlangen, Germany
Phone: +49 - 9131 84-0
Fax: +49 - 9131 84-2924
Email: medg.gms@siemens.com

Siemens Healthcare is a trendsetter in medical imaging, laboratory diagnostics, medical IT and hearing aids. Siemens offers products and solutions for the entire range of patient care – from prevention and early detection to diagnosis, treatment and aftercare. For further information please visit: www.siemens.com/healthcare.

SOCIETY FOR CARDIOVASCULAR MAGNETIC RESONANCE
19 Mantua Road
Mount Royal, NJ 08061, USA
Phone: +1 - 856 423-8955
Fax: +1 - 856 423-3420
Email: dberkowitz@talley.com

The Society for Cardiovascular Magnetic Resonance (SCMR) is an international organization dedicated to the education of physicians and allied healthcare professionals in the application of magnetic resonance to the heart and circulation; to the promotion and dissemination of the understanding and appropriate use of techniques; and to the provision of a forum pursuant of clinical, research, and other issues relevant to the field.

TOSHIBA MEDICAL SYSTEMS EUROPE BV
Zilverstraat 1
2718 RP Zoetermeer, The Netherlands
Phone: +31 - 79 368 9222
Fax: +31 - 79 368 9444
Email: jhoogendoorn@tmse.nl

With patient care at the center of our product design, Toshiba brings a new generation of MR systems: Titan, Titan HSR (cardiac application) and Titan 3T featuring:
- open bore design both at 1.5T and 3T
- broadest range of non contrast MR angio application available on the market
- unique noise reduction system Pianissimo
- most innovative solution both at 1.5T and 3T to get better images whilst taking care of the patient comfort

WISEPRESS MEDICAL BOOKSHOP
The Old Lamp Works, 25 High Path,
Merton Abbey
London SW19 2JL, United Kingdom
Phone: +44 - 20 8715 1812
Fax: +44 - 20 8715 1722
Email: bookshop@wisepress.com
www.wisepress.com

Wisepress.com, Europe’s leading conference bookseller, has a complete range of books and journals relevant to the themes of the meeting. Books can be purchased at the stand or, if you would rather not carry them, posted to you—Wisepress will deliver worldwide. In addition to attending 250 conferences per year, Wisepress has a comprehensive medical and scientific bookshop online with great offers, some up to 40% off the publisher list prices.
LEVEL 1
Registration at Agora 1

LEVEL 2

LEVEL 3
Save The Dates

SCMR/NHLBI Cardiovascular MRI "State of the Art" Course
Natcher Conference Center at the NIH, Bethesda, MD
June 12-13, 2011

SCMR 2012
Marriott World Center, Orlando, FL
February 2-5, 2012

SCMR 2013
Hilton San Francisco, San Francisco, CA
February 1-4, 2013

www.scmr.org
SCMR VISION STATEMENT
The Society for Cardiovascular Magnetic Resonance (SCMR) aims to be the recognized representative and advocate for physicians, scientists, and technologists who work in the field of cardiovascular magnetic resonance (CMR). It endeavors to be the principal international, independent organization committed to the further development of CMR through education, quality control, research and training.

The mission of SCMR is to:
> Foster optimal clinical effectiveness of CMR through professional education, establishment of standards for quality assurance and professional training, continuing medical education, and development of evidence-based guidelines to enhance patient care and improve the quality of cardiovascular medical practice.
> Support coordinated research efforts to promote further development and applications of CMR, and to investigate accuracy, effectiveness, and cost-effectiveness in cardiovascular diagnosis.
> Provide a forum for scientific exchange and information on CMR, through organization of an annual international scientific session and of additional smaller meetings, through on-line open access publication of the Journal of Cardiovascular Magnetic Resonance, and through establishing close working relationships with societies in related fields.
> Build a strong national and international membership body of physicians, scientists, technologists, administrators and other individuals with interest in clinical applications or research in CMR.
> Develop relevant member services, resources and assistance to enhance the development of the field of CMR.

Euro CMR MISSION STATEMENT
The mission of the ESC Working Group on Cardiovascular Magnetic Resonance is to:
> Promote the knowledge of optimal clinical effectiveness of CMR through professional education, establishment of standards for quality assurance and professional training, continued medical education, and development of evidence-based guidelines for its use to enhance patient care and improve the quality of cardiovascular medical practice.
> Support coordinated research efforts to promote further development and applications of CMR, and to investigate accuracy, effectiveness, and cost-effectiveness in cardiovascular diagnosis.
> Provide a forum for scientific exchange and information on CMR, through organization of an annual scientific conference, through the organization of training courses directly or through scientific sponsorship and through establishing close working relationships with societies in related fields.
> Provide the possibility of a European accreditation facility to assure the homogeneity of CMR examination through Europe.
> Build a strong European membership body of physicians, scientists, technologists, with interest in clinical applications or research in CMR.